Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-36x+36=-36x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-6\right)^{2}.
9x^{2}-36x+36+36x=0
Add 36x to both sides.
9x^{2}+36=0
Combine -36x and 36x to get 0.
9x^{2}=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-36}{9}
Divide both sides by 9.
x^{2}=-4
Divide -36 by 9 to get -4.
x=2i x=-2i
The equation is now solved.
9x^{2}-36x+36=-36x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-6\right)^{2}.
9x^{2}-36x+36+36x=0
Add 36x to both sides.
9x^{2}+36=0
Combine -36x and 36x to get 0.
x=\frac{0±\sqrt{0^{2}-4\times 9\times 36}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\times 36}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\times 36}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{-1296}}{2\times 9}
Multiply -36 times 36.
x=\frac{0±36i}{2\times 9}
Take the square root of -1296.
x=\frac{0±36i}{18}
Multiply 2 times 9.
x=2i
Now solve the equation x=\frac{0±36i}{18} when ± is plus.
x=-2i
Now solve the equation x=\frac{0±36i}{18} when ± is minus.
x=2i x=-2i
The equation is now solved.