Solve for x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
27x^{3}-135x^{2}+225x-125=0
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(3x-5\right)^{3}.
±\frac{125}{27},±\frac{125}{9},±\frac{125}{3},±125,±\frac{25}{27},±\frac{25}{9},±\frac{25}{3},±25,±\frac{5}{27},±\frac{5}{9},±\frac{5}{3},±5,±\frac{1}{27},±\frac{1}{9},±\frac{1}{3},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -125 and q divides the leading coefficient 27. List all candidates \frac{p}{q}.
x=\frac{5}{3}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
9x^{2}-30x+25=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 27x^{3}-135x^{2}+225x-125 by 3\left(x-\frac{5}{3}\right)=3x-5 to get 9x^{2}-30x+25. Solve the equation where the result equals to 0.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 9\times 25}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 9 for a, -30 for b, and 25 for c in the quadratic formula.
x=\frac{30±0}{18}
Do the calculations.
x=\frac{5}{3}
Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}