Evaluate
\left(x-5\right)\left(3x-5\right)
Expand
3x^{2}-20x+25
Graph
Share
Copied to clipboard
9x^{2}-30x+25-\left(3x-5\right)\times 2x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5\right)^{2}.
9x^{2}-30x+25-\left(6x-10\right)x
Use the distributive property to multiply 3x-5 by 2.
9x^{2}-30x+25-\left(6x^{2}-10x\right)
Use the distributive property to multiply 6x-10 by x.
9x^{2}-30x+25-6x^{2}+10x
To find the opposite of 6x^{2}-10x, find the opposite of each term.
3x^{2}-30x+25+10x
Combine 9x^{2} and -6x^{2} to get 3x^{2}.
3x^{2}-20x+25
Combine -30x and 10x to get -20x.
9x^{2}-30x+25-\left(3x-5\right)\times 2x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5\right)^{2}.
9x^{2}-30x+25-\left(6x-10\right)x
Use the distributive property to multiply 3x-5 by 2.
9x^{2}-30x+25-\left(6x^{2}-10x\right)
Use the distributive property to multiply 6x-10 by x.
9x^{2}-30x+25-6x^{2}+10x
To find the opposite of 6x^{2}-10x, find the opposite of each term.
3x^{2}-30x+25+10x
Combine 9x^{2} and -6x^{2} to get 3x^{2}.
3x^{2}-20x+25
Combine -30x and 10x to get -20x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}