( 3 x - 5 ( x - 1 ) > 2 ( 3 - 2 x )
Solve for x
x>\frac{1}{2}
Graph
Share
Copied to clipboard
3x-5x+5>2\left(3-2x\right)
Use the distributive property to multiply -5 by x-1.
-2x+5>2\left(3-2x\right)
Combine 3x and -5x to get -2x.
-2x+5>6-4x
Use the distributive property to multiply 2 by 3-2x.
-2x+5+4x>6
Add 4x to both sides.
2x+5>6
Combine -2x and 4x to get 2x.
2x>6-5
Subtract 5 from both sides.
2x>1
Subtract 5 from 6 to get 1.
x>\frac{1}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}