Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3xx^{3}}{x^{3}}-\frac{5}{x^{3}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x times \frac{x^{3}}{x^{3}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3xx^{3}-5}{x^{3}})
Since \frac{3xx^{3}}{x^{3}} and \frac{5}{x^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x^{4}-5}{x^{3}})
Do the multiplications in 3xx^{3}-5.
\frac{x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{4}-5)-\left(3x^{4}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3})}{\left(x^{3}\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{x^{3}\times 4\times 3x^{4-1}-\left(3x^{4}-5\right)\times 3x^{3-1}}{\left(x^{3}\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{x^{3}\times 12x^{3}-\left(3x^{4}-5\right)\times 3x^{2}}{\left(x^{3}\right)^{2}}
Do the arithmetic.
\frac{x^{3}\times 12x^{3}-\left(3x^{4}\times 3x^{2}-5\times 3x^{2}\right)}{\left(x^{3}\right)^{2}}
Expand using distributive property.
\frac{12x^{3+3}-\left(3\times 3x^{4+2}-5\times 3x^{2}\right)}{\left(x^{3}\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{12x^{6}-\left(9x^{6}-15x^{2}\right)}{\left(x^{3}\right)^{2}}
Do the arithmetic.
\frac{12x^{6}-9x^{6}-\left(-15x^{2}\right)}{\left(x^{3}\right)^{2}}
Remove unnecessary parentheses.
\frac{\left(12-9\right)x^{6}-\left(-15x^{2}\right)}{\left(x^{3}\right)^{2}}
Combine like terms.
\frac{3x^{6}-\left(-15x^{2}\right)}{\left(x^{3}\right)^{2}}
Subtract 9 from 12.
\frac{3x^{2}\left(x^{4}-\left(-5x^{0}\right)\right)}{\left(x^{3}\right)^{2}}
Factor out 3x^{2}.
\frac{3x^{2}\left(x^{4}-\left(-5x^{0}\right)\right)}{x^{3\times 2}}
To raise a power to another power, multiply the exponents.
\frac{3x^{2}\left(x^{4}-\left(-5x^{0}\right)\right)}{x^{6}}
Multiply 3 times 2.
\frac{3\left(x^{4}-\left(-5x^{0}\right)\right)}{x^{6-2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{3\left(x^{4}-\left(-5x^{0}\right)\right)}{x^{4}}
Subtract 2 from 6.
\frac{3\left(x^{4}-\left(-5\right)\right)}{x^{4}}
For any term t except 0, t^{0}=1.