Solve for x
x=2
x = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
Graph
Share
Copied to clipboard
9x^{2}-24x+16-5\left(3x-4\right)+6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
9x^{2}-24x+16-15x+20+6=0
Use the distributive property to multiply -5 by 3x-4.
9x^{2}-39x+16+20+6=0
Combine -24x and -15x to get -39x.
9x^{2}-39x+36+6=0
Add 16 and 20 to get 36.
9x^{2}-39x+42=0
Add 36 and 6 to get 42.
3x^{2}-13x+14=0
Divide both sides by 3.
a+b=-13 ab=3\times 14=42
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+14. To find a and b, set up a system to be solved.
-1,-42 -2,-21 -3,-14 -6,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 42.
-1-42=-43 -2-21=-23 -3-14=-17 -6-7=-13
Calculate the sum for each pair.
a=-7 b=-6
The solution is the pair that gives sum -13.
\left(3x^{2}-7x\right)+\left(-6x+14\right)
Rewrite 3x^{2}-13x+14 as \left(3x^{2}-7x\right)+\left(-6x+14\right).
x\left(3x-7\right)-2\left(3x-7\right)
Factor out x in the first and -2 in the second group.
\left(3x-7\right)\left(x-2\right)
Factor out common term 3x-7 by using distributive property.
x=\frac{7}{3} x=2
To find equation solutions, solve 3x-7=0 and x-2=0.
9x^{2}-24x+16-5\left(3x-4\right)+6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
9x^{2}-24x+16-15x+20+6=0
Use the distributive property to multiply -5 by 3x-4.
9x^{2}-39x+16+20+6=0
Combine -24x and -15x to get -39x.
9x^{2}-39x+36+6=0
Add 16 and 20 to get 36.
9x^{2}-39x+42=0
Add 36 and 6 to get 42.
x=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\times 9\times 42}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -39 for b, and 42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-39\right)±\sqrt{1521-4\times 9\times 42}}{2\times 9}
Square -39.
x=\frac{-\left(-39\right)±\sqrt{1521-36\times 42}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-39\right)±\sqrt{1521-1512}}{2\times 9}
Multiply -36 times 42.
x=\frac{-\left(-39\right)±\sqrt{9}}{2\times 9}
Add 1521 to -1512.
x=\frac{-\left(-39\right)±3}{2\times 9}
Take the square root of 9.
x=\frac{39±3}{2\times 9}
The opposite of -39 is 39.
x=\frac{39±3}{18}
Multiply 2 times 9.
x=\frac{42}{18}
Now solve the equation x=\frac{39±3}{18} when ± is plus. Add 39 to 3.
x=\frac{7}{3}
Reduce the fraction \frac{42}{18} to lowest terms by extracting and canceling out 6.
x=\frac{36}{18}
Now solve the equation x=\frac{39±3}{18} when ± is minus. Subtract 3 from 39.
x=2
Divide 36 by 18.
x=\frac{7}{3} x=2
The equation is now solved.
9x^{2}-24x+16-5\left(3x-4\right)+6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
9x^{2}-24x+16-15x+20+6=0
Use the distributive property to multiply -5 by 3x-4.
9x^{2}-39x+16+20+6=0
Combine -24x and -15x to get -39x.
9x^{2}-39x+36+6=0
Add 16 and 20 to get 36.
9x^{2}-39x+42=0
Add 36 and 6 to get 42.
9x^{2}-39x=-42
Subtract 42 from both sides. Anything subtracted from zero gives its negation.
\frac{9x^{2}-39x}{9}=-\frac{42}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{39}{9}\right)x=-\frac{42}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{13}{3}x=-\frac{42}{9}
Reduce the fraction \frac{-39}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{13}{3}x=-\frac{14}{3}
Reduce the fraction \frac{-42}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{13}{3}x+\left(-\frac{13}{6}\right)^{2}=-\frac{14}{3}+\left(-\frac{13}{6}\right)^{2}
Divide -\frac{13}{3}, the coefficient of the x term, by 2 to get -\frac{13}{6}. Then add the square of -\frac{13}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{3}x+\frac{169}{36}=-\frac{14}{3}+\frac{169}{36}
Square -\frac{13}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{3}x+\frac{169}{36}=\frac{1}{36}
Add -\frac{14}{3} to \frac{169}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{6}\right)^{2}=\frac{1}{36}
Factor x^{2}-\frac{13}{3}x+\frac{169}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
x-\frac{13}{6}=\frac{1}{6} x-\frac{13}{6}=-\frac{1}{6}
Simplify.
x=\frac{7}{3} x=2
Add \frac{13}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}