Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-24x+16-\left(x+3\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
9x^{2}-24x+16-\left(x^{2}+6x+9\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
9x^{2}-24x+16-x^{2}-6x-9=0
To find the opposite of x^{2}+6x+9, find the opposite of each term.
8x^{2}-24x+16-6x-9=0
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}-30x+16-9=0
Combine -24x and -6x to get -30x.
8x^{2}-30x+7=0
Subtract 9 from 16 to get 7.
a+b=-30 ab=8\times 7=56
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 8x^{2}+ax+bx+7. To find a and b, set up a system to be solved.
-1,-56 -2,-28 -4,-14 -7,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 56.
-1-56=-57 -2-28=-30 -4-14=-18 -7-8=-15
Calculate the sum for each pair.
a=-28 b=-2
The solution is the pair that gives sum -30.
\left(8x^{2}-28x\right)+\left(-2x+7\right)
Rewrite 8x^{2}-30x+7 as \left(8x^{2}-28x\right)+\left(-2x+7\right).
4x\left(2x-7\right)-\left(2x-7\right)
Factor out 4x in the first and -1 in the second group.
\left(2x-7\right)\left(4x-1\right)
Factor out common term 2x-7 by using distributive property.
x=\frac{7}{2} x=\frac{1}{4}
To find equation solutions, solve 2x-7=0 and 4x-1=0.
9x^{2}-24x+16-\left(x+3\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
9x^{2}-24x+16-\left(x^{2}+6x+9\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
9x^{2}-24x+16-x^{2}-6x-9=0
To find the opposite of x^{2}+6x+9, find the opposite of each term.
8x^{2}-24x+16-6x-9=0
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}-30x+16-9=0
Combine -24x and -6x to get -30x.
8x^{2}-30x+7=0
Subtract 9 from 16 to get 7.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 8\times 7}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -30 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 8\times 7}}{2\times 8}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-32\times 7}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-30\right)±\sqrt{900-224}}{2\times 8}
Multiply -32 times 7.
x=\frac{-\left(-30\right)±\sqrt{676}}{2\times 8}
Add 900 to -224.
x=\frac{-\left(-30\right)±26}{2\times 8}
Take the square root of 676.
x=\frac{30±26}{2\times 8}
The opposite of -30 is 30.
x=\frac{30±26}{16}
Multiply 2 times 8.
x=\frac{56}{16}
Now solve the equation x=\frac{30±26}{16} when ± is plus. Add 30 to 26.
x=\frac{7}{2}
Reduce the fraction \frac{56}{16} to lowest terms by extracting and canceling out 8.
x=\frac{4}{16}
Now solve the equation x=\frac{30±26}{16} when ± is minus. Subtract 26 from 30.
x=\frac{1}{4}
Reduce the fraction \frac{4}{16} to lowest terms by extracting and canceling out 4.
x=\frac{7}{2} x=\frac{1}{4}
The equation is now solved.
9x^{2}-24x+16-\left(x+3\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
9x^{2}-24x+16-\left(x^{2}+6x+9\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
9x^{2}-24x+16-x^{2}-6x-9=0
To find the opposite of x^{2}+6x+9, find the opposite of each term.
8x^{2}-24x+16-6x-9=0
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}-30x+16-9=0
Combine -24x and -6x to get -30x.
8x^{2}-30x+7=0
Subtract 9 from 16 to get 7.
8x^{2}-30x=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
\frac{8x^{2}-30x}{8}=-\frac{7}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{30}{8}\right)x=-\frac{7}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{15}{4}x=-\frac{7}{8}
Reduce the fraction \frac{-30}{8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{15}{4}x+\left(-\frac{15}{8}\right)^{2}=-\frac{7}{8}+\left(-\frac{15}{8}\right)^{2}
Divide -\frac{15}{4}, the coefficient of the x term, by 2 to get -\frac{15}{8}. Then add the square of -\frac{15}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{15}{4}x+\frac{225}{64}=-\frac{7}{8}+\frac{225}{64}
Square -\frac{15}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{15}{4}x+\frac{225}{64}=\frac{169}{64}
Add -\frac{7}{8} to \frac{225}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{15}{8}\right)^{2}=\frac{169}{64}
Factor x^{2}-\frac{15}{4}x+\frac{225}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{8}\right)^{2}}=\sqrt{\frac{169}{64}}
Take the square root of both sides of the equation.
x-\frac{15}{8}=\frac{13}{8} x-\frac{15}{8}=-\frac{13}{8}
Simplify.
x=\frac{7}{2} x=\frac{1}{4}
Add \frac{15}{8} to both sides of the equation.