Evaluate
11x^{2}-64xy+28y^{2}
Expand
11x^{2}-64xy+28y^{2}
Share
Copied to clipboard
3x^{2}-9xy-2yx+6y^{2}+\left(x-4y\right)\left(x-10y\right)-\left(-x+6y\right)\left(7x+3y\right)
Apply the distributive property by multiplying each term of 3x-2y by each term of x-3y.
3x^{2}-11xy+6y^{2}+\left(x-4y\right)\left(x-10y\right)-\left(-x+6y\right)\left(7x+3y\right)
Combine -9xy and -2yx to get -11xy.
3x^{2}-11xy+6y^{2}+x^{2}-10xy-4yx+40y^{2}-\left(-x+6y\right)\left(7x+3y\right)
Apply the distributive property by multiplying each term of x-4y by each term of x-10y.
3x^{2}-11xy+6y^{2}+x^{2}-14xy+40y^{2}-\left(-x+6y\right)\left(7x+3y\right)
Combine -10xy and -4yx to get -14xy.
4x^{2}-11xy+6y^{2}-14xy+40y^{2}-\left(-x+6y\right)\left(7x+3y\right)
Combine 3x^{2} and x^{2} to get 4x^{2}.
4x^{2}-25xy+6y^{2}+40y^{2}-\left(-x+6y\right)\left(7x+3y\right)
Combine -11xy and -14xy to get -25xy.
4x^{2}-25xy+46y^{2}-\left(-x+6y\right)\left(7x+3y\right)
Combine 6y^{2} and 40y^{2} to get 46y^{2}.
4x^{2}-25xy+46y^{2}-\left(7\left(-x\right)x+3\left(-x\right)y+42yx+18y^{2}\right)
Apply the distributive property by multiplying each term of -x+6y by each term of 7x+3y.
4x^{2}-25xy+46y^{2}-7\left(-x\right)x-3\left(-x\right)y-42yx-18y^{2}
To find the opposite of 7\left(-x\right)x+3\left(-x\right)y+42yx+18y^{2}, find the opposite of each term.
4x^{2}-25xy+46y^{2}+7xx-3\left(-x\right)y-42yx-18y^{2}
Multiply -7 and -1 to get 7.
4x^{2}-25xy+46y^{2}+7x^{2}-3\left(-x\right)y-42yx-18y^{2}
Multiply x and x to get x^{2}.
11x^{2}-25xy+46y^{2}-3\left(-x\right)y-42yx-18y^{2}
Combine 4x^{2} and 7x^{2} to get 11x^{2}.
11x^{2}-25xy+46y^{2}+3xy-42yx-18y^{2}
Multiply -3 and -1 to get 3.
11x^{2}-22xy+46y^{2}-42yx-18y^{2}
Combine -25xy and 3xy to get -22xy.
11x^{2}-64xy+46y^{2}-18y^{2}
Combine -22xy and -42yx to get -64xy.
11x^{2}-64xy+28y^{2}
Combine 46y^{2} and -18y^{2} to get 28y^{2}.
3x^{2}-9xy-2yx+6y^{2}+\left(x-4y\right)\left(x-10y\right)-\left(-x+6y\right)\left(7x+3y\right)
Apply the distributive property by multiplying each term of 3x-2y by each term of x-3y.
3x^{2}-11xy+6y^{2}+\left(x-4y\right)\left(x-10y\right)-\left(-x+6y\right)\left(7x+3y\right)
Combine -9xy and -2yx to get -11xy.
3x^{2}-11xy+6y^{2}+x^{2}-10xy-4yx+40y^{2}-\left(-x+6y\right)\left(7x+3y\right)
Apply the distributive property by multiplying each term of x-4y by each term of x-10y.
3x^{2}-11xy+6y^{2}+x^{2}-14xy+40y^{2}-\left(-x+6y\right)\left(7x+3y\right)
Combine -10xy and -4yx to get -14xy.
4x^{2}-11xy+6y^{2}-14xy+40y^{2}-\left(-x+6y\right)\left(7x+3y\right)
Combine 3x^{2} and x^{2} to get 4x^{2}.
4x^{2}-25xy+6y^{2}+40y^{2}-\left(-x+6y\right)\left(7x+3y\right)
Combine -11xy and -14xy to get -25xy.
4x^{2}-25xy+46y^{2}-\left(-x+6y\right)\left(7x+3y\right)
Combine 6y^{2} and 40y^{2} to get 46y^{2}.
4x^{2}-25xy+46y^{2}-\left(7\left(-x\right)x+3\left(-x\right)y+42yx+18y^{2}\right)
Apply the distributive property by multiplying each term of -x+6y by each term of 7x+3y.
4x^{2}-25xy+46y^{2}-7\left(-x\right)x-3\left(-x\right)y-42yx-18y^{2}
To find the opposite of 7\left(-x\right)x+3\left(-x\right)y+42yx+18y^{2}, find the opposite of each term.
4x^{2}-25xy+46y^{2}+7xx-3\left(-x\right)y-42yx-18y^{2}
Multiply -7 and -1 to get 7.
4x^{2}-25xy+46y^{2}+7x^{2}-3\left(-x\right)y-42yx-18y^{2}
Multiply x and x to get x^{2}.
11x^{2}-25xy+46y^{2}-3\left(-x\right)y-42yx-18y^{2}
Combine 4x^{2} and 7x^{2} to get 11x^{2}.
11x^{2}-25xy+46y^{2}+3xy-42yx-18y^{2}
Multiply -3 and -1 to get 3.
11x^{2}-22xy+46y^{2}-42yx-18y^{2}
Combine -25xy and 3xy to get -22xy.
11x^{2}-64xy+46y^{2}-18y^{2}
Combine -22xy and -42yx to get -64xy.
11x^{2}-64xy+28y^{2}
Combine 46y^{2} and -18y^{2} to get 28y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}