Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(3x\right)^{2}-4=35x
Consider \left(3x-2\right)\left(3x+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
3^{2}x^{2}-4=35x
Expand \left(3x\right)^{2}.
9x^{2}-4=35x
Calculate 3 to the power of 2 and get 9.
9x^{2}-4-35x=0
Subtract 35x from both sides.
9x^{2}-35x-4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-35 ab=9\left(-4\right)=-36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,-36 2,-18 3,-12 4,-9 6,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Calculate the sum for each pair.
a=-36 b=1
The solution is the pair that gives sum -35.
\left(9x^{2}-36x\right)+\left(x-4\right)
Rewrite 9x^{2}-35x-4 as \left(9x^{2}-36x\right)+\left(x-4\right).
9x\left(x-4\right)+x-4
Factor out 9x in 9x^{2}-36x.
\left(x-4\right)\left(9x+1\right)
Factor out common term x-4 by using distributive property.
x=4 x=-\frac{1}{9}
To find equation solutions, solve x-4=0 and 9x+1=0.
\left(3x\right)^{2}-4=35x
Consider \left(3x-2\right)\left(3x+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
3^{2}x^{2}-4=35x
Expand \left(3x\right)^{2}.
9x^{2}-4=35x
Calculate 3 to the power of 2 and get 9.
9x^{2}-4-35x=0
Subtract 35x from both sides.
9x^{2}-35x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times 9\left(-4\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -35 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-35\right)±\sqrt{1225-4\times 9\left(-4\right)}}{2\times 9}
Square -35.
x=\frac{-\left(-35\right)±\sqrt{1225-36\left(-4\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-35\right)±\sqrt{1225+144}}{2\times 9}
Multiply -36 times -4.
x=\frac{-\left(-35\right)±\sqrt{1369}}{2\times 9}
Add 1225 to 144.
x=\frac{-\left(-35\right)±37}{2\times 9}
Take the square root of 1369.
x=\frac{35±37}{2\times 9}
The opposite of -35 is 35.
x=\frac{35±37}{18}
Multiply 2 times 9.
x=\frac{72}{18}
Now solve the equation x=\frac{35±37}{18} when ± is plus. Add 35 to 37.
x=4
Divide 72 by 18.
x=-\frac{2}{18}
Now solve the equation x=\frac{35±37}{18} when ± is minus. Subtract 37 from 35.
x=-\frac{1}{9}
Reduce the fraction \frac{-2}{18} to lowest terms by extracting and canceling out 2.
x=4 x=-\frac{1}{9}
The equation is now solved.
\left(3x\right)^{2}-4=35x
Consider \left(3x-2\right)\left(3x+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
3^{2}x^{2}-4=35x
Expand \left(3x\right)^{2}.
9x^{2}-4=35x
Calculate 3 to the power of 2 and get 9.
9x^{2}-4-35x=0
Subtract 35x from both sides.
9x^{2}-35x=4
Add 4 to both sides. Anything plus zero gives itself.
\frac{9x^{2}-35x}{9}=\frac{4}{9}
Divide both sides by 9.
x^{2}-\frac{35}{9}x=\frac{4}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{35}{9}x+\left(-\frac{35}{18}\right)^{2}=\frac{4}{9}+\left(-\frac{35}{18}\right)^{2}
Divide -\frac{35}{9}, the coefficient of the x term, by 2 to get -\frac{35}{18}. Then add the square of -\frac{35}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{35}{9}x+\frac{1225}{324}=\frac{4}{9}+\frac{1225}{324}
Square -\frac{35}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{35}{9}x+\frac{1225}{324}=\frac{1369}{324}
Add \frac{4}{9} to \frac{1225}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{35}{18}\right)^{2}=\frac{1369}{324}
Factor x^{2}-\frac{35}{9}x+\frac{1225}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{18}\right)^{2}}=\sqrt{\frac{1369}{324}}
Take the square root of both sides of the equation.
x-\frac{35}{18}=\frac{37}{18} x-\frac{35}{18}=-\frac{37}{18}
Simplify.
x=4 x=-\frac{1}{9}
Add \frac{35}{18} to both sides of the equation.