Solve for x
x>\frac{32}{9}
Graph
Share
Copied to clipboard
9x^{2}-12x+4-8x^{2}<\left(x+4\right)\left(x-7\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
x^{2}-12x+4<\left(x+4\right)\left(x-7\right)
Combine 9x^{2} and -8x^{2} to get x^{2}.
x^{2}-12x+4<x^{2}-3x-28
Use the distributive property to multiply x+4 by x-7 and combine like terms.
x^{2}-12x+4-x^{2}<-3x-28
Subtract x^{2} from both sides.
-12x+4<-3x-28
Combine x^{2} and -x^{2} to get 0.
-12x+4+3x<-28
Add 3x to both sides.
-9x+4<-28
Combine -12x and 3x to get -9x.
-9x<-28-4
Subtract 4 from both sides.
-9x<-32
Subtract 4 from -28 to get -32.
x>\frac{-32}{-9}
Divide both sides by -9. Since -9 is negative, the inequality direction is changed.
x>\frac{32}{9}
Fraction \frac{-32}{-9} can be simplified to \frac{32}{9} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}