Solve for x
x=\frac{1}{3}\approx 0.333333333
x=2
Graph
Share
Copied to clipboard
9x^{2}-12x+4-4=9x-6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
9x^{2}-12x=9x-6
Subtract 4 from 4 to get 0.
9x^{2}-12x-9x=-6
Subtract 9x from both sides.
9x^{2}-21x=-6
Combine -12x and -9x to get -21x.
9x^{2}-21x+6=0
Add 6 to both sides.
3x^{2}-7x+2=0
Divide both sides by 3.
a+b=-7 ab=3\times 2=6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+2. To find a and b, set up a system to be solved.
-1,-6 -2,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 6.
-1-6=-7 -2-3=-5
Calculate the sum for each pair.
a=-6 b=-1
The solution is the pair that gives sum -7.
\left(3x^{2}-6x\right)+\left(-x+2\right)
Rewrite 3x^{2}-7x+2 as \left(3x^{2}-6x\right)+\left(-x+2\right).
3x\left(x-2\right)-\left(x-2\right)
Factor out 3x in the first and -1 in the second group.
\left(x-2\right)\left(3x-1\right)
Factor out common term x-2 by using distributive property.
x=2 x=\frac{1}{3}
To find equation solutions, solve x-2=0 and 3x-1=0.
9x^{2}-12x+4-4=9x-6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
9x^{2}-12x=9x-6
Subtract 4 from 4 to get 0.
9x^{2}-12x-9x=-6
Subtract 9x from both sides.
9x^{2}-21x=-6
Combine -12x and -9x to get -21x.
9x^{2}-21x+6=0
Add 6 to both sides.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 9\times 6}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -21 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 9\times 6}}{2\times 9}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-36\times 6}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-21\right)±\sqrt{441-216}}{2\times 9}
Multiply -36 times 6.
x=\frac{-\left(-21\right)±\sqrt{225}}{2\times 9}
Add 441 to -216.
x=\frac{-\left(-21\right)±15}{2\times 9}
Take the square root of 225.
x=\frac{21±15}{2\times 9}
The opposite of -21 is 21.
x=\frac{21±15}{18}
Multiply 2 times 9.
x=\frac{36}{18}
Now solve the equation x=\frac{21±15}{18} when ± is plus. Add 21 to 15.
x=2
Divide 36 by 18.
x=\frac{6}{18}
Now solve the equation x=\frac{21±15}{18} when ± is minus. Subtract 15 from 21.
x=\frac{1}{3}
Reduce the fraction \frac{6}{18} to lowest terms by extracting and canceling out 6.
x=2 x=\frac{1}{3}
The equation is now solved.
9x^{2}-12x+4-4=9x-6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
9x^{2}-12x=9x-6
Subtract 4 from 4 to get 0.
9x^{2}-12x-9x=-6
Subtract 9x from both sides.
9x^{2}-21x=-6
Combine -12x and -9x to get -21x.
\frac{9x^{2}-21x}{9}=-\frac{6}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{21}{9}\right)x=-\frac{6}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{7}{3}x=-\frac{6}{9}
Reduce the fraction \frac{-21}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{7}{3}x=-\frac{2}{3}
Reduce the fraction \frac{-6}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=-\frac{2}{3}+\left(-\frac{7}{6}\right)^{2}
Divide -\frac{7}{3}, the coefficient of the x term, by 2 to get -\frac{7}{6}. Then add the square of -\frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{3}x+\frac{49}{36}=-\frac{2}{3}+\frac{49}{36}
Square -\frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{25}{36}
Add -\frac{2}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{6}\right)^{2}=\frac{25}{36}
Factor x^{2}-\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Take the square root of both sides of the equation.
x-\frac{7}{6}=\frac{5}{6} x-\frac{7}{6}=-\frac{5}{6}
Simplify.
x=2 x=\frac{1}{3}
Add \frac{7}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}