Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-12x+4=36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
9x^{2}-12x+4-36=0
Subtract 36 from both sides.
9x^{2}-12x-32=0
Subtract 36 from 4 to get -32.
a+b=-12 ab=9\left(-32\right)=-288
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx-32. To find a and b, set up a system to be solved.
1,-288 2,-144 3,-96 4,-72 6,-48 8,-36 9,-32 12,-24 16,-18
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -288.
1-288=-287 2-144=-142 3-96=-93 4-72=-68 6-48=-42 8-36=-28 9-32=-23 12-24=-12 16-18=-2
Calculate the sum for each pair.
a=-24 b=12
The solution is the pair that gives sum -12.
\left(9x^{2}-24x\right)+\left(12x-32\right)
Rewrite 9x^{2}-12x-32 as \left(9x^{2}-24x\right)+\left(12x-32\right).
3x\left(3x-8\right)+4\left(3x-8\right)
Factor out 3x in the first and 4 in the second group.
\left(3x-8\right)\left(3x+4\right)
Factor out common term 3x-8 by using distributive property.
x=\frac{8}{3} x=-\frac{4}{3}
To find equation solutions, solve 3x-8=0 and 3x+4=0.
9x^{2}-12x+4=36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
9x^{2}-12x+4-36=0
Subtract 36 from both sides.
9x^{2}-12x-32=0
Subtract 36 from 4 to get -32.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\left(-32\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -12 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 9\left(-32\right)}}{2\times 9}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-36\left(-32\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-12\right)±\sqrt{144+1152}}{2\times 9}
Multiply -36 times -32.
x=\frac{-\left(-12\right)±\sqrt{1296}}{2\times 9}
Add 144 to 1152.
x=\frac{-\left(-12\right)±36}{2\times 9}
Take the square root of 1296.
x=\frac{12±36}{2\times 9}
The opposite of -12 is 12.
x=\frac{12±36}{18}
Multiply 2 times 9.
x=\frac{48}{18}
Now solve the equation x=\frac{12±36}{18} when ± is plus. Add 12 to 36.
x=\frac{8}{3}
Reduce the fraction \frac{48}{18} to lowest terms by extracting and canceling out 6.
x=-\frac{24}{18}
Now solve the equation x=\frac{12±36}{18} when ± is minus. Subtract 36 from 12.
x=-\frac{4}{3}
Reduce the fraction \frac{-24}{18} to lowest terms by extracting and canceling out 6.
x=\frac{8}{3} x=-\frac{4}{3}
The equation is now solved.
9x^{2}-12x+4=36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
9x^{2}-12x=36-4
Subtract 4 from both sides.
9x^{2}-12x=32
Subtract 4 from 36 to get 32.
\frac{9x^{2}-12x}{9}=\frac{32}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{12}{9}\right)x=\frac{32}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{4}{3}x=\frac{32}{9}
Reduce the fraction \frac{-12}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{32}{9}+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{32+4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=4
Add \frac{32}{9} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{3}\right)^{2}=4
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-\frac{2}{3}=2 x-\frac{2}{3}=-2
Simplify.
x=\frac{8}{3} x=-\frac{4}{3}
Add \frac{2}{3} to both sides of the equation.