Solve for x
x=-\frac{9}{32}=-0.28125
Graph
Share
Copied to clipboard
9x^{2}-12x+4=\left(x-5\right)\left(9x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
9x^{2}-12x+4=9x^{2}-44x-5
Use the distributive property to multiply x-5 by 9x+1 and combine like terms.
9x^{2}-12x+4-9x^{2}=-44x-5
Subtract 9x^{2} from both sides.
-12x+4=-44x-5
Combine 9x^{2} and -9x^{2} to get 0.
-12x+4+44x=-5
Add 44x to both sides.
32x+4=-5
Combine -12x and 44x to get 32x.
32x=-5-4
Subtract 4 from both sides.
32x=-9
Subtract 4 from -5 to get -9.
x=\frac{-9}{32}
Divide both sides by 32.
x=-\frac{9}{32}
Fraction \frac{-9}{32} can be rewritten as -\frac{9}{32} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}