Solve for x
x = \frac{20}{3} = 6\frac{2}{3} \approx 6.666666667
x=7
Graph
Share
Copied to clipboard
9x^{2}-108x+324-5\left(3x-18\right)+6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-18\right)^{2}.
9x^{2}-108x+324-15x+90+6=0
Use the distributive property to multiply -5 by 3x-18.
9x^{2}-123x+324+90+6=0
Combine -108x and -15x to get -123x.
9x^{2}-123x+414+6=0
Add 324 and 90 to get 414.
9x^{2}-123x+420=0
Add 414 and 6 to get 420.
x=\frac{-\left(-123\right)±\sqrt{\left(-123\right)^{2}-4\times 9\times 420}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -123 for b, and 420 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-123\right)±\sqrt{15129-4\times 9\times 420}}{2\times 9}
Square -123.
x=\frac{-\left(-123\right)±\sqrt{15129-36\times 420}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-123\right)±\sqrt{15129-15120}}{2\times 9}
Multiply -36 times 420.
x=\frac{-\left(-123\right)±\sqrt{9}}{2\times 9}
Add 15129 to -15120.
x=\frac{-\left(-123\right)±3}{2\times 9}
Take the square root of 9.
x=\frac{123±3}{2\times 9}
The opposite of -123 is 123.
x=\frac{123±3}{18}
Multiply 2 times 9.
x=\frac{126}{18}
Now solve the equation x=\frac{123±3}{18} when ± is plus. Add 123 to 3.
x=7
Divide 126 by 18.
x=\frac{120}{18}
Now solve the equation x=\frac{123±3}{18} when ± is minus. Subtract 3 from 123.
x=\frac{20}{3}
Reduce the fraction \frac{120}{18} to lowest terms by extracting and canceling out 6.
x=7 x=\frac{20}{3}
The equation is now solved.
9x^{2}-108x+324-5\left(3x-18\right)+6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-18\right)^{2}.
9x^{2}-108x+324-15x+90+6=0
Use the distributive property to multiply -5 by 3x-18.
9x^{2}-123x+324+90+6=0
Combine -108x and -15x to get -123x.
9x^{2}-123x+414+6=0
Add 324 and 90 to get 414.
9x^{2}-123x+420=0
Add 414 and 6 to get 420.
9x^{2}-123x=-420
Subtract 420 from both sides. Anything subtracted from zero gives its negation.
\frac{9x^{2}-123x}{9}=-\frac{420}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{123}{9}\right)x=-\frac{420}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{41}{3}x=-\frac{420}{9}
Reduce the fraction \frac{-123}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{41}{3}x=-\frac{140}{3}
Reduce the fraction \frac{-420}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{41}{3}x+\left(-\frac{41}{6}\right)^{2}=-\frac{140}{3}+\left(-\frac{41}{6}\right)^{2}
Divide -\frac{41}{3}, the coefficient of the x term, by 2 to get -\frac{41}{6}. Then add the square of -\frac{41}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{41}{3}x+\frac{1681}{36}=-\frac{140}{3}+\frac{1681}{36}
Square -\frac{41}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{41}{3}x+\frac{1681}{36}=\frac{1}{36}
Add -\frac{140}{3} to \frac{1681}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{41}{6}\right)^{2}=\frac{1}{36}
Factor x^{2}-\frac{41}{3}x+\frac{1681}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{41}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
x-\frac{41}{6}=\frac{1}{6} x-\frac{41}{6}=-\frac{1}{6}
Simplify.
x=7 x=\frac{20}{3}
Add \frac{41}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}