Evaluate
35x+3
Expand
35x+3
Graph
Share
Copied to clipboard
\left(3x\right)^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Consider \left(3x-1\right)\left(3x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}x^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Expand \left(3x\right)^{2}.
9x^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Calculate 3 to the power of 2 and get 9.
9x^{2}-1-\left(x-4\right)\left(9x+1\right)
Calculate 1 to the power of 2 and get 1.
9x^{2}-1-\left(9x^{2}+x-36x-4\right)
Apply the distributive property by multiplying each term of x-4 by each term of 9x+1.
9x^{2}-1-\left(9x^{2}-35x-4\right)
Combine x and -36x to get -35x.
9x^{2}-1-9x^{2}-\left(-35x\right)-\left(-4\right)
To find the opposite of 9x^{2}-35x-4, find the opposite of each term.
9x^{2}-1-9x^{2}+35x-\left(-4\right)
The opposite of -35x is 35x.
9x^{2}-1-9x^{2}+35x+4
The opposite of -4 is 4.
-1+35x+4
Combine 9x^{2} and -9x^{2} to get 0.
3+35x
Add -1 and 4 to get 3.
\left(3x\right)^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Consider \left(3x-1\right)\left(3x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}x^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Expand \left(3x\right)^{2}.
9x^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Calculate 3 to the power of 2 and get 9.
9x^{2}-1-\left(x-4\right)\left(9x+1\right)
Calculate 1 to the power of 2 and get 1.
9x^{2}-1-\left(9x^{2}+x-36x-4\right)
Apply the distributive property by multiplying each term of x-4 by each term of 9x+1.
9x^{2}-1-\left(9x^{2}-35x-4\right)
Combine x and -36x to get -35x.
9x^{2}-1-9x^{2}-\left(-35x\right)-\left(-4\right)
To find the opposite of 9x^{2}-35x-4, find the opposite of each term.
9x^{2}-1-9x^{2}+35x-\left(-4\right)
The opposite of -35x is 35x.
9x^{2}-1-9x^{2}+35x+4
The opposite of -4 is 4.
-1+35x+4
Combine 9x^{2} and -9x^{2} to get 0.
3+35x
Add -1 and 4 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}