Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(3x\right)^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Consider \left(3x-1\right)\left(3x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}x^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Expand \left(3x\right)^{2}.
9x^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Calculate 3 to the power of 2 and get 9.
9x^{2}-1-\left(x-4\right)\left(9x+1\right)
Calculate 1 to the power of 2 and get 1.
9x^{2}-1-\left(9x^{2}+x-36x-4\right)
Apply the distributive property by multiplying each term of x-4 by each term of 9x+1.
9x^{2}-1-\left(9x^{2}-35x-4\right)
Combine x and -36x to get -35x.
9x^{2}-1-9x^{2}-\left(-35x\right)-\left(-4\right)
To find the opposite of 9x^{2}-35x-4, find the opposite of each term.
9x^{2}-1-9x^{2}+35x-\left(-4\right)
The opposite of -35x is 35x.
9x^{2}-1-9x^{2}+35x+4
The opposite of -4 is 4.
-1+35x+4
Combine 9x^{2} and -9x^{2} to get 0.
3+35x
Add -1 and 4 to get 3.
\left(3x\right)^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Consider \left(3x-1\right)\left(3x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}x^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Expand \left(3x\right)^{2}.
9x^{2}-1^{2}-\left(x-4\right)\left(9x+1\right)
Calculate 3 to the power of 2 and get 9.
9x^{2}-1-\left(x-4\right)\left(9x+1\right)
Calculate 1 to the power of 2 and get 1.
9x^{2}-1-\left(9x^{2}+x-36x-4\right)
Apply the distributive property by multiplying each term of x-4 by each term of 9x+1.
9x^{2}-1-\left(9x^{2}-35x-4\right)
Combine x and -36x to get -35x.
9x^{2}-1-9x^{2}-\left(-35x\right)-\left(-4\right)
To find the opposite of 9x^{2}-35x-4, find the opposite of each term.
9x^{2}-1-9x^{2}+35x-\left(-4\right)
The opposite of -35x is 35x.
9x^{2}-1-9x^{2}+35x+4
The opposite of -4 is 4.
-1+35x+4
Combine 9x^{2} and -9x^{2} to get 0.
3+35x
Add -1 and 4 to get 3.