Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(3x\right)^{2}-1-\left(5x-4\right)\left(2x+3\right)=3
Consider \left(3x-1\right)\left(3x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
3^{2}x^{2}-1-\left(5x-4\right)\left(2x+3\right)=3
Expand \left(3x\right)^{2}.
9x^{2}-1-\left(5x-4\right)\left(2x+3\right)=3
Calculate 3 to the power of 2 and get 9.
9x^{2}-1-\left(10x^{2}+7x-12\right)=3
Use the distributive property to multiply 5x-4 by 2x+3 and combine like terms.
9x^{2}-1-10x^{2}-7x+12=3
To find the opposite of 10x^{2}+7x-12, find the opposite of each term.
-x^{2}-1-7x+12=3
Combine 9x^{2} and -10x^{2} to get -x^{2}.
-x^{2}+11-7x=3
Add -1 and 12 to get 11.
-x^{2}+11-7x-3=0
Subtract 3 from both sides.
-x^{2}+8-7x=0
Subtract 3 from 11 to get 8.
-x^{2}-7x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -7 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-1\right)\times 8}}{2\left(-1\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+4\times 8}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-7\right)±\sqrt{49+32}}{2\left(-1\right)}
Multiply 4 times 8.
x=\frac{-\left(-7\right)±\sqrt{81}}{2\left(-1\right)}
Add 49 to 32.
x=\frac{-\left(-7\right)±9}{2\left(-1\right)}
Take the square root of 81.
x=\frac{7±9}{2\left(-1\right)}
The opposite of -7 is 7.
x=\frac{7±9}{-2}
Multiply 2 times -1.
x=\frac{16}{-2}
Now solve the equation x=\frac{7±9}{-2} when ± is plus. Add 7 to 9.
x=-8
Divide 16 by -2.
x=-\frac{2}{-2}
Now solve the equation x=\frac{7±9}{-2} when ± is minus. Subtract 9 from 7.
x=1
Divide -2 by -2.
x=-8 x=1
The equation is now solved.
\left(3x\right)^{2}-1-\left(5x-4\right)\left(2x+3\right)=3
Consider \left(3x-1\right)\left(3x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
3^{2}x^{2}-1-\left(5x-4\right)\left(2x+3\right)=3
Expand \left(3x\right)^{2}.
9x^{2}-1-\left(5x-4\right)\left(2x+3\right)=3
Calculate 3 to the power of 2 and get 9.
9x^{2}-1-\left(10x^{2}+7x-12\right)=3
Use the distributive property to multiply 5x-4 by 2x+3 and combine like terms.
9x^{2}-1-10x^{2}-7x+12=3
To find the opposite of 10x^{2}+7x-12, find the opposite of each term.
-x^{2}-1-7x+12=3
Combine 9x^{2} and -10x^{2} to get -x^{2}.
-x^{2}+11-7x=3
Add -1 and 12 to get 11.
-x^{2}-7x=3-11
Subtract 11 from both sides.
-x^{2}-7x=-8
Subtract 11 from 3 to get -8.
\frac{-x^{2}-7x}{-1}=-\frac{8}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{7}{-1}\right)x=-\frac{8}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+7x=-\frac{8}{-1}
Divide -7 by -1.
x^{2}+7x=8
Divide -8 by -1.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=8+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=8+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{81}{4}
Add 8 to \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{81}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{9}{2} x+\frac{7}{2}=-\frac{9}{2}
Simplify.
x=1 x=-8
Subtract \frac{7}{2} from both sides of the equation.