Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-6x+1=x\left(4x-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-1\right)^{2}.
9x^{2}-6x+1=4x^{2}-x
Use the distributive property to multiply x by 4x-1.
9x^{2}-6x+1-4x^{2}=-x
Subtract 4x^{2} from both sides.
5x^{2}-6x+1=-x
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}-6x+1+x=0
Add x to both sides.
5x^{2}-5x+1=0
Combine -6x and x to get -5x.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 5}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -5 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 5}}{2\times 5}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-20}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-5\right)±\sqrt{5}}{2\times 5}
Add 25 to -20.
x=\frac{5±\sqrt{5}}{2\times 5}
The opposite of -5 is 5.
x=\frac{5±\sqrt{5}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{5}+5}{10}
Now solve the equation x=\frac{5±\sqrt{5}}{10} when ± is plus. Add 5 to \sqrt{5}.
x=\frac{\sqrt{5}}{10}+\frac{1}{2}
Divide 5+\sqrt{5} by 10.
x=\frac{5-\sqrt{5}}{10}
Now solve the equation x=\frac{5±\sqrt{5}}{10} when ± is minus. Subtract \sqrt{5} from 5.
x=-\frac{\sqrt{5}}{10}+\frac{1}{2}
Divide 5-\sqrt{5} by 10.
x=\frac{\sqrt{5}}{10}+\frac{1}{2} x=-\frac{\sqrt{5}}{10}+\frac{1}{2}
The equation is now solved.
9x^{2}-6x+1=x\left(4x-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-1\right)^{2}.
9x^{2}-6x+1=4x^{2}-x
Use the distributive property to multiply x by 4x-1.
9x^{2}-6x+1-4x^{2}=-x
Subtract 4x^{2} from both sides.
5x^{2}-6x+1=-x
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}-6x+1+x=0
Add x to both sides.
5x^{2}-5x+1=0
Combine -6x and x to get -5x.
5x^{2}-5x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{5x^{2}-5x}{5}=-\frac{1}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{5}{5}\right)x=-\frac{1}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-x=-\frac{1}{5}
Divide -5 by 5.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{1}{5}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\frac{1}{5}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{1}{20}
Add -\frac{1}{5} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{20}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{20}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{5}}{10} x-\frac{1}{2}=-\frac{\sqrt{5}}{10}
Simplify.
x=\frac{\sqrt{5}}{10}+\frac{1}{2} x=-\frac{\sqrt{5}}{10}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.