Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-6x+1=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-1\right)^{2}.
9x^{2}-6x+1-16=0
Subtract 16 from both sides.
9x^{2}-6x-15=0
Subtract 16 from 1 to get -15.
3x^{2}-2x-5=0
Divide both sides by 3.
a+b=-2 ab=3\left(-5\right)=-15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
1,-15 3,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -15.
1-15=-14 3-5=-2
Calculate the sum for each pair.
a=-5 b=3
The solution is the pair that gives sum -2.
\left(3x^{2}-5x\right)+\left(3x-5\right)
Rewrite 3x^{2}-2x-5 as \left(3x^{2}-5x\right)+\left(3x-5\right).
x\left(3x-5\right)+3x-5
Factor out x in 3x^{2}-5x.
\left(3x-5\right)\left(x+1\right)
Factor out common term 3x-5 by using distributive property.
x=\frac{5}{3} x=-1
To find equation solutions, solve 3x-5=0 and x+1=0.
9x^{2}-6x+1=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-1\right)^{2}.
9x^{2}-6x+1-16=0
Subtract 16 from both sides.
9x^{2}-6x-15=0
Subtract 16 from 1 to get -15.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9\left(-15\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -6 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9\left(-15\right)}}{2\times 9}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-36\left(-15\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-6\right)±\sqrt{36+540}}{2\times 9}
Multiply -36 times -15.
x=\frac{-\left(-6\right)±\sqrt{576}}{2\times 9}
Add 36 to 540.
x=\frac{-\left(-6\right)±24}{2\times 9}
Take the square root of 576.
x=\frac{6±24}{2\times 9}
The opposite of -6 is 6.
x=\frac{6±24}{18}
Multiply 2 times 9.
x=\frac{30}{18}
Now solve the equation x=\frac{6±24}{18} when ± is plus. Add 6 to 24.
x=\frac{5}{3}
Reduce the fraction \frac{30}{18} to lowest terms by extracting and canceling out 6.
x=-\frac{18}{18}
Now solve the equation x=\frac{6±24}{18} when ± is minus. Subtract 24 from 6.
x=-1
Divide -18 by 18.
x=\frac{5}{3} x=-1
The equation is now solved.
9x^{2}-6x+1=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-1\right)^{2}.
9x^{2}-6x=16-1
Subtract 1 from both sides.
9x^{2}-6x=15
Subtract 1 from 16 to get 15.
\frac{9x^{2}-6x}{9}=\frac{15}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{6}{9}\right)x=\frac{15}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{2}{3}x=\frac{15}{9}
Reduce the fraction \frac{-6}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{2}{3}x=\frac{5}{3}
Reduce the fraction \frac{15}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{5}{3}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{5}{3}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{16}{9}
Add \frac{5}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3}\right)^{2}=\frac{16}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{4}{3} x-\frac{1}{3}=-\frac{4}{3}
Simplify.
x=\frac{5}{3} x=-1
Add \frac{1}{3} to both sides of the equation.