( 3 x ( 1 + 12 x ) - ( 6 x - 1 ) ( 6 x + 1 ) = 2,5 x
Solve for x
x=-2
Graph
Share
Copied to clipboard
3x+36x^{2}-\left(6x-1\right)\left(6x+1\right)=2,5x
Use the distributive property to multiply 3x by 1+12x.
3x+36x^{2}-\left(\left(6x\right)^{2}-1\right)=2,5x
Consider \left(6x-1\right)\left(6x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
3x+36x^{2}-\left(6^{2}x^{2}-1\right)=2,5x
Expand \left(6x\right)^{2}.
3x+36x^{2}-\left(36x^{2}-1\right)=2,5x
Calculate 6 to the power of 2 and get 36.
3x+36x^{2}-36x^{2}+1=2,5x
To find the opposite of 36x^{2}-1, find the opposite of each term.
3x+1=2,5x
Combine 36x^{2} and -36x^{2} to get 0.
3x+1-2,5x=0
Subtract 2,5x from both sides.
0,5x+1=0
Combine 3x and -2,5x to get 0,5x.
0,5x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-1}{0,5}
Divide both sides by 0,5.
x=\frac{-10}{5}
Expand \frac{-1}{0,5} by multiplying both numerator and the denominator by 10.
x=-2
Divide -10 by 5 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}