Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{2\left(3x^{3}-3x+13\right)}{2}+\frac{5x^{2}}{2}\right)\left(2x^{2}+2\right)-\left(-6x+24\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x^{3}-3x+13 times \frac{2}{2}.
\frac{2\left(3x^{3}-3x+13\right)+5x^{2}}{2}\left(2x^{2}+2\right)-\left(-6x+24\right)
Since \frac{2\left(3x^{3}-3x+13\right)}{2} and \frac{5x^{2}}{2} have the same denominator, add them by adding their numerators.
\frac{6x^{3}-6x+26+5x^{2}}{2}\left(2x^{2}+2\right)-\left(-6x+24\right)
Do the multiplications in 2\left(3x^{3}-3x+13\right)+5x^{2}.
\frac{\left(6x^{3}-6x+26+5x^{2}\right)\left(2x^{2}+2\right)}{2}-\left(-6x+24\right)
Express \frac{6x^{3}-6x+26+5x^{2}}{2}\left(2x^{2}+2\right) as a single fraction.
\frac{12x^{5}-12x+62x^{2}+52+10x^{4}}{2}-\left(-6x+24\right)
Use the distributive property to multiply 6x^{3}-6x+26+5x^{2} by 2x^{2}+2 and combine like terms.
\frac{12x^{5}-12x+62x^{2}+52+10x^{4}}{2}+6x-24
To find the opposite of -6x+24, find the opposite of each term.
\frac{12x^{5}-12x+62x^{2}+52+10x^{4}}{2}+\frac{2\left(6x-24\right)}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6x-24 times \frac{2}{2}.
\frac{12x^{5}-12x+62x^{2}+52+10x^{4}+2\left(6x-24\right)}{2}
Since \frac{12x^{5}-12x+62x^{2}+52+10x^{4}}{2} and \frac{2\left(6x-24\right)}{2} have the same denominator, add them by adding their numerators.
\frac{12x^{5}-12x+62x^{2}+52+10x^{4}+12x-48}{2}
Do the multiplications in 12x^{5}-12x+62x^{2}+52+10x^{4}+2\left(6x-24\right).
\frac{12x^{5}+62x^{2}+4+10x^{4}}{2}
Combine like terms in 12x^{5}-12x+62x^{2}+52+10x^{4}+12x-48.
6x^{5}+31x^{2}+2+5x^{4}
Divide each term of 12x^{5}+62x^{2}+4+10x^{4} by 2 to get 6x^{5}+31x^{2}+2+5x^{4}.
\left(\frac{2\left(3x^{3}-3x+13\right)}{2}+\frac{5x^{2}}{2}\right)\left(2x^{2}+2\right)-\left(-6x+24\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x^{3}-3x+13 times \frac{2}{2}.
\frac{2\left(3x^{3}-3x+13\right)+5x^{2}}{2}\left(2x^{2}+2\right)-\left(-6x+24\right)
Since \frac{2\left(3x^{3}-3x+13\right)}{2} and \frac{5x^{2}}{2} have the same denominator, add them by adding their numerators.
\frac{6x^{3}-6x+26+5x^{2}}{2}\left(2x^{2}+2\right)-\left(-6x+24\right)
Do the multiplications in 2\left(3x^{3}-3x+13\right)+5x^{2}.
\frac{\left(6x^{3}-6x+26+5x^{2}\right)\left(2x^{2}+2\right)}{2}-\left(-6x+24\right)
Express \frac{6x^{3}-6x+26+5x^{2}}{2}\left(2x^{2}+2\right) as a single fraction.
\frac{12x^{5}-12x+62x^{2}+52+10x^{4}}{2}-\left(-6x+24\right)
Use the distributive property to multiply 6x^{3}-6x+26+5x^{2} by 2x^{2}+2 and combine like terms.
\frac{12x^{5}-12x+62x^{2}+52+10x^{4}}{2}+6x-24
To find the opposite of -6x+24, find the opposite of each term.
\frac{12x^{5}-12x+62x^{2}+52+10x^{4}}{2}+\frac{2\left(6x-24\right)}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6x-24 times \frac{2}{2}.
\frac{12x^{5}-12x+62x^{2}+52+10x^{4}+2\left(6x-24\right)}{2}
Since \frac{12x^{5}-12x+62x^{2}+52+10x^{4}}{2} and \frac{2\left(6x-24\right)}{2} have the same denominator, add them by adding their numerators.
\frac{12x^{5}-12x+62x^{2}+52+10x^{4}+12x-48}{2}
Do the multiplications in 12x^{5}-12x+62x^{2}+52+10x^{4}+2\left(6x-24\right).
\frac{12x^{5}+62x^{2}+4+10x^{4}}{2}
Combine like terms in 12x^{5}-12x+62x^{2}+52+10x^{4}+12x-48.
6x^{5}+31x^{2}+2+5x^{4}
Divide each term of 12x^{5}+62x^{2}+4+10x^{4} by 2 to get 6x^{5}+31x^{2}+2+5x^{4}.