Evaluate
\frac{3x^{5}}{2}+x^{3}-2x^{2}+1
Expand
\frac{3x^{5}}{2}+x^{3}-2x^{2}+1
Graph
Share
Copied to clipboard
\frac{\left(3x^{3}+2x-4\right)x^{2}}{2}+1
Express \frac{3x^{3}+2x-4}{2}x^{2} as a single fraction.
\frac{\left(3x^{3}+2x-4\right)x^{2}}{2}+\frac{2}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{\left(3x^{3}+2x-4\right)x^{2}+2}{2}
Since \frac{\left(3x^{3}+2x-4\right)x^{2}}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{3x^{5}+2x^{3}-4x^{2}+2}{2}
Do the multiplications in \left(3x^{3}+2x-4\right)x^{2}+2.
\frac{\left(3x^{3}+2x-4\right)x^{2}}{2}+1
Express \frac{3x^{3}+2x-4}{2}x^{2} as a single fraction.
\frac{\left(3x^{3}+2x-4\right)x^{2}}{2}+\frac{2}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{\left(3x^{3}+2x-4\right)x^{2}+2}{2}
Since \frac{\left(3x^{3}+2x-4\right)x^{2}}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{3x^{5}+2x^{3}-4x^{2}+2}{2}
Do the multiplications in \left(3x^{3}+2x-4\right)x^{2}+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}