Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9\left(x^{2}\right)^{2}-24x^{2}+16-3x^{2}=2\left(8+13x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x^{2}-4\right)^{2}.
9x^{4}-24x^{2}+16-3x^{2}=2\left(8+13x\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
9x^{4}-27x^{2}+16=2\left(8+13x\right)
Combine -24x^{2} and -3x^{2} to get -27x^{2}.
9x^{4}-27x^{2}+16=16+26x
Use the distributive property to multiply 2 by 8+13x.
9x^{4}-27x^{2}+16-16=26x
Subtract 16 from both sides.
9x^{4}-27x^{2}=26x
Subtract 16 from 16 to get 0.
9x^{4}-27x^{2}-26x=0
Subtract 26x from both sides.
9t^{2}-27t-26=0
Substitute t for x^{2}.
t=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 9\left(-26\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 9 for a, -27 for b, and -26 for c in the quadratic formula.
t=\frac{27±3\sqrt{185}}{18}
Do the calculations.
t=\frac{\sqrt{185}}{6}+\frac{3}{2} t=-\frac{\sqrt{185}}{6}+\frac{3}{2}
Solve the equation t=\frac{27±3\sqrt{185}}{18} when ± is plus and when ± is minus.
x=\frac{\sqrt{\frac{2\sqrt{185}}{3}+6}}{2} x=-\frac{\sqrt{\frac{2\sqrt{185}}{3}+6}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.