Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+4x-12-6x+10
Combine 3x^{2} and 2x^{2} to get 5x^{2}.
5x^{2}-2x-12+10
Combine 4x and -6x to get -2x.
5x^{2}-2x-2
Add -12 and 10 to get -2.
factor(5x^{2}+4x-12-6x+10)
Combine 3x^{2} and 2x^{2} to get 5x^{2}.
factor(5x^{2}-2x-12+10)
Combine 4x and -6x to get -2x.
factor(5x^{2}-2x-2)
Add -12 and 10 to get -2.
5x^{2}-2x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 5\left(-2\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 5\left(-2\right)}}{2\times 5}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-20\left(-2\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-2\right)±\sqrt{4+40}}{2\times 5}
Multiply -20 times -2.
x=\frac{-\left(-2\right)±\sqrt{44}}{2\times 5}
Add 4 to 40.
x=\frac{-\left(-2\right)±2\sqrt{11}}{2\times 5}
Take the square root of 44.
x=\frac{2±2\sqrt{11}}{2\times 5}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{11}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{11}+2}{10}
Now solve the equation x=\frac{2±2\sqrt{11}}{10} when ± is plus. Add 2 to 2\sqrt{11}.
x=\frac{\sqrt{11}+1}{5}
Divide 2+2\sqrt{11} by 10.
x=\frac{2-2\sqrt{11}}{10}
Now solve the equation x=\frac{2±2\sqrt{11}}{10} when ± is minus. Subtract 2\sqrt{11} from 2.
x=\frac{1-\sqrt{11}}{5}
Divide 2-2\sqrt{11} by 10.
5x^{2}-2x-2=5\left(x-\frac{\sqrt{11}+1}{5}\right)\left(x-\frac{1-\sqrt{11}}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{11}}{5} for x_{1} and \frac{1-\sqrt{11}}{5} for x_{2}.