Evaluate
-9y^{2}
Expand
-9y^{2}
Share
Copied to clipboard
9x^{2}+6xy+y^{2}-\left(3x-y\right)^{2}+\left(\left(x+2y\right)^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+y\right)^{2}.
9x^{2}+6xy+y^{2}-\left(9x^{2}-6xy+y^{2}\right)+\left(\left(x+2y\right)^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-y\right)^{2}.
9x^{2}+6xy+y^{2}-9x^{2}+6xy-y^{2}+\left(\left(x+2y\right)^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
To find the opposite of 9x^{2}-6xy+y^{2}, find the opposite of each term.
6xy+y^{2}+6xy-y^{2}+\left(\left(x+2y\right)^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Combine 9x^{2} and -9x^{2} to get 0.
12xy+y^{2}-y^{2}+\left(\left(x+2y\right)^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Combine 6xy and 6xy to get 12xy.
12xy+\left(\left(x+2y\right)^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Combine y^{2} and -y^{2} to get 0.
12xy+\left(x^{2}+4xy+4y^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2y\right)^{2}.
12xy+\left(x^{2}+4xy+4y^{2}+x^{2}-4xy+4y^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2y\right)^{2}.
12xy+\left(2x^{2}+4xy+4y^{2}-4xy+4y^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
12xy+\left(2x^{2}+4y^{2}+4y^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Combine 4xy and -4xy to get 0.
12xy+\left(2x^{2}+8y^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Combine 4y^{2} and 4y^{2} to get 8y^{2}.
12xy+2x^{2}\times 2-\left(2x+3y\right)^{2}
Combine 8y^{2} and -8y^{2} to get 0.
12xy+4x^{2}-\left(2x+3y\right)^{2}
Multiply 2 and 2 to get 4.
12xy+4x^{2}-\left(4x^{2}+12xy+9y^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3y\right)^{2}.
12xy+4x^{2}-4x^{2}-12xy-9y^{2}
To find the opposite of 4x^{2}+12xy+9y^{2}, find the opposite of each term.
12xy-12xy-9y^{2}
Combine 4x^{2} and -4x^{2} to get 0.
-9y^{2}
Combine 12xy and -12xy to get 0.
9x^{2}+6xy+y^{2}-\left(3x-y\right)^{2}+\left(\left(x+2y\right)^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+y\right)^{2}.
9x^{2}+6xy+y^{2}-\left(9x^{2}-6xy+y^{2}\right)+\left(\left(x+2y\right)^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-y\right)^{2}.
9x^{2}+6xy+y^{2}-9x^{2}+6xy-y^{2}+\left(\left(x+2y\right)^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
To find the opposite of 9x^{2}-6xy+y^{2}, find the opposite of each term.
6xy+y^{2}+6xy-y^{2}+\left(\left(x+2y\right)^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Combine 9x^{2} and -9x^{2} to get 0.
12xy+y^{2}-y^{2}+\left(\left(x+2y\right)^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Combine 6xy and 6xy to get 12xy.
12xy+\left(\left(x+2y\right)^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Combine y^{2} and -y^{2} to get 0.
12xy+\left(x^{2}+4xy+4y^{2}+\left(x-2y\right)^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2y\right)^{2}.
12xy+\left(x^{2}+4xy+4y^{2}+x^{2}-4xy+4y^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2y\right)^{2}.
12xy+\left(2x^{2}+4xy+4y^{2}-4xy+4y^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
12xy+\left(2x^{2}+4y^{2}+4y^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Combine 4xy and -4xy to get 0.
12xy+\left(2x^{2}+8y^{2}-8y^{2}\right)\times 2-\left(2x+3y\right)^{2}
Combine 4y^{2} and 4y^{2} to get 8y^{2}.
12xy+2x^{2}\times 2-\left(2x+3y\right)^{2}
Combine 8y^{2} and -8y^{2} to get 0.
12xy+4x^{2}-\left(2x+3y\right)^{2}
Multiply 2 and 2 to get 4.
12xy+4x^{2}-\left(4x^{2}+12xy+9y^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3y\right)^{2}.
12xy+4x^{2}-4x^{2}-12xy-9y^{2}
To find the opposite of 4x^{2}+12xy+9y^{2}, find the opposite of each term.
12xy-12xy-9y^{2}
Combine 4x^{2} and -4x^{2} to get 0.
-9y^{2}
Combine 12xy and -12xy to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}