Solve for x
x=3
x=0
Graph
Share
Copied to clipboard
9x^{2}+36x+36=\left(3x\right)^{2}+\left(2x+6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+6\right)^{2}.
9x^{2}+36x+36=3^{2}x^{2}+\left(2x+6\right)^{2}
Expand \left(3x\right)^{2}.
9x^{2}+36x+36=9x^{2}+\left(2x+6\right)^{2}
Calculate 3 to the power of 2 and get 9.
9x^{2}+36x+36=9x^{2}+4x^{2}+24x+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+6\right)^{2}.
9x^{2}+36x+36=13x^{2}+24x+36
Combine 9x^{2} and 4x^{2} to get 13x^{2}.
9x^{2}+36x+36-13x^{2}=24x+36
Subtract 13x^{2} from both sides.
-4x^{2}+36x+36=24x+36
Combine 9x^{2} and -13x^{2} to get -4x^{2}.
-4x^{2}+36x+36-24x=36
Subtract 24x from both sides.
-4x^{2}+12x+36=36
Combine 36x and -24x to get 12x.
-4x^{2}+12x+36-36=0
Subtract 36 from both sides.
-4x^{2}+12x=0
Subtract 36 from 36 to get 0.
x\left(-4x+12\right)=0
Factor out x.
x=0 x=3
To find equation solutions, solve x=0 and -4x+12=0.
9x^{2}+36x+36=\left(3x\right)^{2}+\left(2x+6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+6\right)^{2}.
9x^{2}+36x+36=3^{2}x^{2}+\left(2x+6\right)^{2}
Expand \left(3x\right)^{2}.
9x^{2}+36x+36=9x^{2}+\left(2x+6\right)^{2}
Calculate 3 to the power of 2 and get 9.
9x^{2}+36x+36=9x^{2}+4x^{2}+24x+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+6\right)^{2}.
9x^{2}+36x+36=13x^{2}+24x+36
Combine 9x^{2} and 4x^{2} to get 13x^{2}.
9x^{2}+36x+36-13x^{2}=24x+36
Subtract 13x^{2} from both sides.
-4x^{2}+36x+36=24x+36
Combine 9x^{2} and -13x^{2} to get -4x^{2}.
-4x^{2}+36x+36-24x=36
Subtract 24x from both sides.
-4x^{2}+12x+36=36
Combine 36x and -24x to get 12x.
-4x^{2}+12x+36-36=0
Subtract 36 from both sides.
-4x^{2}+12x=0
Subtract 36 from 36 to get 0.
x=\frac{-12±\sqrt{12^{2}}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 12 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±12}{2\left(-4\right)}
Take the square root of 12^{2}.
x=\frac{-12±12}{-8}
Multiply 2 times -4.
x=\frac{0}{-8}
Now solve the equation x=\frac{-12±12}{-8} when ± is plus. Add -12 to 12.
x=0
Divide 0 by -8.
x=-\frac{24}{-8}
Now solve the equation x=\frac{-12±12}{-8} when ± is minus. Subtract 12 from -12.
x=3
Divide -24 by -8.
x=0 x=3
The equation is now solved.
9x^{2}+36x+36=\left(3x\right)^{2}+\left(2x+6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+6\right)^{2}.
9x^{2}+36x+36=3^{2}x^{2}+\left(2x+6\right)^{2}
Expand \left(3x\right)^{2}.
9x^{2}+36x+36=9x^{2}+\left(2x+6\right)^{2}
Calculate 3 to the power of 2 and get 9.
9x^{2}+36x+36=9x^{2}+4x^{2}+24x+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+6\right)^{2}.
9x^{2}+36x+36=13x^{2}+24x+36
Combine 9x^{2} and 4x^{2} to get 13x^{2}.
9x^{2}+36x+36-13x^{2}=24x+36
Subtract 13x^{2} from both sides.
-4x^{2}+36x+36=24x+36
Combine 9x^{2} and -13x^{2} to get -4x^{2}.
-4x^{2}+36x+36-24x=36
Subtract 24x from both sides.
-4x^{2}+12x+36=36
Combine 36x and -24x to get 12x.
-4x^{2}+12x=36-36
Subtract 36 from both sides.
-4x^{2}+12x=0
Subtract 36 from 36 to get 0.
\frac{-4x^{2}+12x}{-4}=\frac{0}{-4}
Divide both sides by -4.
x^{2}+\frac{12}{-4}x=\frac{0}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-3x=\frac{0}{-4}
Divide 12 by -4.
x^{2}-3x=0
Divide 0 by -4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
Simplify.
x=3 x=0
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}