Evaluate
25-x
Expand
25-x
Graph
Share
Copied to clipboard
3x^{2}+6x+5x+10-3\left(x+5\right)\left(x-1\right)
Apply the distributive property by multiplying each term of 3x+5 by each term of x+2.
3x^{2}+11x+10-3\left(x+5\right)\left(x-1\right)
Combine 6x and 5x to get 11x.
3x^{2}+11x+10+\left(-3x-15\right)\left(x-1\right)
Use the distributive property to multiply -3 by x+5.
3x^{2}+11x+10-3x^{2}+3x-15x+15
Apply the distributive property by multiplying each term of -3x-15 by each term of x-1.
3x^{2}+11x+10-3x^{2}-12x+15
Combine 3x and -15x to get -12x.
11x+10-12x+15
Combine 3x^{2} and -3x^{2} to get 0.
-x+10+15
Combine 11x and -12x to get -x.
-x+25
Add 10 and 15 to get 25.
3x^{2}+6x+5x+10-3\left(x+5\right)\left(x-1\right)
Apply the distributive property by multiplying each term of 3x+5 by each term of x+2.
3x^{2}+11x+10-3\left(x+5\right)\left(x-1\right)
Combine 6x and 5x to get 11x.
3x^{2}+11x+10+\left(-3x-15\right)\left(x-1\right)
Use the distributive property to multiply -3 by x+5.
3x^{2}+11x+10-3x^{2}+3x-15x+15
Apply the distributive property by multiplying each term of -3x-15 by each term of x-1.
3x^{2}+11x+10-3x^{2}-12x+15
Combine 3x and -15x to get -12x.
11x+10-12x+15
Combine 3x^{2} and -3x^{2} to get 0.
-x+10+15
Combine 11x and -12x to get -x.
-x+25
Add 10 and 15 to get 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}