Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+30x+25-\left(x+2\right)^{2}=\left(2x+3\right)^{2}+\left(2x+1\right)^{2}+411x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+5\right)^{2}.
9x^{2}+30x+25-\left(x^{2}+4x+4\right)=\left(2x+3\right)^{2}+\left(2x+1\right)^{2}+411x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
9x^{2}+30x+25-x^{2}-4x-4=\left(2x+3\right)^{2}+\left(2x+1\right)^{2}+411x
To find the opposite of x^{2}+4x+4, find the opposite of each term.
8x^{2}+30x+25-4x-4=\left(2x+3\right)^{2}+\left(2x+1\right)^{2}+411x
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}+26x+25-4=\left(2x+3\right)^{2}+\left(2x+1\right)^{2}+411x
Combine 30x and -4x to get 26x.
8x^{2}+26x+21=\left(2x+3\right)^{2}+\left(2x+1\right)^{2}+411x
Subtract 4 from 25 to get 21.
8x^{2}+26x+21=4x^{2}+12x+9+\left(2x+1\right)^{2}+411x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
8x^{2}+26x+21=4x^{2}+12x+9+4x^{2}+4x+1+411x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
8x^{2}+26x+21=8x^{2}+12x+9+4x+1+411x
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+26x+21=8x^{2}+16x+9+1+411x
Combine 12x and 4x to get 16x.
8x^{2}+26x+21=8x^{2}+16x+10+411x
Add 9 and 1 to get 10.
8x^{2}+26x+21=8x^{2}+427x+10
Combine 16x and 411x to get 427x.
8x^{2}+26x+21-8x^{2}=427x+10
Subtract 8x^{2} from both sides.
26x+21=427x+10
Combine 8x^{2} and -8x^{2} to get 0.
26x+21-427x=10
Subtract 427x from both sides.
-401x+21=10
Combine 26x and -427x to get -401x.
-401x=10-21
Subtract 21 from both sides.
-401x=-11
Subtract 21 from 10 to get -11.
x=\frac{-11}{-401}
Divide both sides by -401.
x=\frac{11}{401}
Fraction \frac{-11}{-401} can be simplified to \frac{11}{401} by removing the negative sign from both the numerator and the denominator.