Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+30x+25=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+5\right)^{2}.
9x^{2}+30x+25-4=0
Subtract 4 from both sides.
9x^{2}+30x+21=0
Subtract 4 from 25 to get 21.
3x^{2}+10x+7=0
Divide both sides by 3.
a+b=10 ab=3\times 7=21
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+7. To find a and b, set up a system to be solved.
1,21 3,7
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 21.
1+21=22 3+7=10
Calculate the sum for each pair.
a=3 b=7
The solution is the pair that gives sum 10.
\left(3x^{2}+3x\right)+\left(7x+7\right)
Rewrite 3x^{2}+10x+7 as \left(3x^{2}+3x\right)+\left(7x+7\right).
3x\left(x+1\right)+7\left(x+1\right)
Factor out 3x in the first and 7 in the second group.
\left(x+1\right)\left(3x+7\right)
Factor out common term x+1 by using distributive property.
x=-1 x=-\frac{7}{3}
To find equation solutions, solve x+1=0 and 3x+7=0.
9x^{2}+30x+25=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+5\right)^{2}.
9x^{2}+30x+25-4=0
Subtract 4 from both sides.
9x^{2}+30x+21=0
Subtract 4 from 25 to get 21.
x=\frac{-30±\sqrt{30^{2}-4\times 9\times 21}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 30 for b, and 21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 9\times 21}}{2\times 9}
Square 30.
x=\frac{-30±\sqrt{900-36\times 21}}{2\times 9}
Multiply -4 times 9.
x=\frac{-30±\sqrt{900-756}}{2\times 9}
Multiply -36 times 21.
x=\frac{-30±\sqrt{144}}{2\times 9}
Add 900 to -756.
x=\frac{-30±12}{2\times 9}
Take the square root of 144.
x=\frac{-30±12}{18}
Multiply 2 times 9.
x=-\frac{18}{18}
Now solve the equation x=\frac{-30±12}{18} when ± is plus. Add -30 to 12.
x=-1
Divide -18 by 18.
x=-\frac{42}{18}
Now solve the equation x=\frac{-30±12}{18} when ± is minus. Subtract 12 from -30.
x=-\frac{7}{3}
Reduce the fraction \frac{-42}{18} to lowest terms by extracting and canceling out 6.
x=-1 x=-\frac{7}{3}
The equation is now solved.
9x^{2}+30x+25=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+5\right)^{2}.
9x^{2}+30x=4-25
Subtract 25 from both sides.
9x^{2}+30x=-21
Subtract 25 from 4 to get -21.
\frac{9x^{2}+30x}{9}=-\frac{21}{9}
Divide both sides by 9.
x^{2}+\frac{30}{9}x=-\frac{21}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{10}{3}x=-\frac{21}{9}
Reduce the fraction \frac{30}{9} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{10}{3}x=-\frac{7}{3}
Reduce the fraction \frac{-21}{9} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=-\frac{7}{3}+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{10}{3}x+\frac{25}{9}=-\frac{7}{3}+\frac{25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{4}{9}
Add -\frac{7}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{3}\right)^{2}=\frac{4}{9}
Factor x^{2}+\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
x+\frac{5}{3}=\frac{2}{3} x+\frac{5}{3}=-\frac{2}{3}
Simplify.
x=-1 x=-\frac{7}{3}
Subtract \frac{5}{3} from both sides of the equation.