Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(3x\right)^{2}-\left(2y\right)^{2}-y\left(x-4y\right)
Consider \left(3x+2y\right)\left(3x-2y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}x^{2}-\left(2y\right)^{2}-y\left(x-4y\right)
Expand \left(3x\right)^{2}.
9x^{2}-\left(2y\right)^{2}-y\left(x-4y\right)
Calculate 3 to the power of 2 and get 9.
9x^{2}-2^{2}y^{2}-y\left(x-4y\right)
Expand \left(2y\right)^{2}.
9x^{2}-4y^{2}-y\left(x-4y\right)
Calculate 2 to the power of 2 and get 4.
9x^{2}-4y^{2}-\left(yx-4y^{2}\right)
Use the distributive property to multiply y by x-4y.
9x^{2}-4y^{2}-yx-\left(-4y^{2}\right)
To find the opposite of yx-4y^{2}, find the opposite of each term.
9x^{2}-4y^{2}-yx+4y^{2}
The opposite of -4y^{2} is 4y^{2}.
9x^{2}-yx
Combine -4y^{2} and 4y^{2} to get 0.
\left(3x\right)^{2}-\left(2y\right)^{2}-y\left(x-4y\right)
Consider \left(3x+2y\right)\left(3x-2y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}x^{2}-\left(2y\right)^{2}-y\left(x-4y\right)
Expand \left(3x\right)^{2}.
9x^{2}-\left(2y\right)^{2}-y\left(x-4y\right)
Calculate 3 to the power of 2 and get 9.
9x^{2}-2^{2}y^{2}-y\left(x-4y\right)
Expand \left(2y\right)^{2}.
9x^{2}-4y^{2}-y\left(x-4y\right)
Calculate 2 to the power of 2 and get 4.
9x^{2}-4y^{2}-\left(yx-4y^{2}\right)
Use the distributive property to multiply y by x-4y.
9x^{2}-4y^{2}-yx-\left(-4y^{2}\right)
To find the opposite of yx-4y^{2}, find the opposite of each term.
9x^{2}-4y^{2}-yx+4y^{2}
The opposite of -4y^{2} is 4y^{2}.
9x^{2}-yx
Combine -4y^{2} and 4y^{2} to get 0.