Evaluate
4x\left(x-2y\right)
Expand
4x^{2}-8xy
Share
Copied to clipboard
\left(3x\right)^{2}-\left(2y\right)^{2}-\left(x+2y\right)\left(5x-2y\right)
Consider \left(3x+2y\right)\left(3x-2y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}x^{2}-\left(2y\right)^{2}-\left(x+2y\right)\left(5x-2y\right)
Expand \left(3x\right)^{2}.
9x^{2}-\left(2y\right)^{2}-\left(x+2y\right)\left(5x-2y\right)
Calculate 3 to the power of 2 and get 9.
9x^{2}-2^{2}y^{2}-\left(x+2y\right)\left(5x-2y\right)
Expand \left(2y\right)^{2}.
9x^{2}-4y^{2}-\left(x+2y\right)\left(5x-2y\right)
Calculate 2 to the power of 2 and get 4.
9x^{2}-4y^{2}-\left(5x^{2}-2xy+10yx-4y^{2}\right)
Apply the distributive property by multiplying each term of x+2y by each term of 5x-2y.
9x^{2}-4y^{2}-\left(5x^{2}+8xy-4y^{2}\right)
Combine -2xy and 10yx to get 8xy.
9x^{2}-4y^{2}-5x^{2}-8xy-\left(-4y^{2}\right)
To find the opposite of 5x^{2}+8xy-4y^{2}, find the opposite of each term.
9x^{2}-4y^{2}-5x^{2}-8xy+4y^{2}
The opposite of -4y^{2} is 4y^{2}.
4x^{2}-4y^{2}-8xy+4y^{2}
Combine 9x^{2} and -5x^{2} to get 4x^{2}.
4x^{2}-8xy
Combine -4y^{2} and 4y^{2} to get 0.
\left(3x\right)^{2}-\left(2y\right)^{2}-\left(x+2y\right)\left(5x-2y\right)
Consider \left(3x+2y\right)\left(3x-2y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}x^{2}-\left(2y\right)^{2}-\left(x+2y\right)\left(5x-2y\right)
Expand \left(3x\right)^{2}.
9x^{2}-\left(2y\right)^{2}-\left(x+2y\right)\left(5x-2y\right)
Calculate 3 to the power of 2 and get 9.
9x^{2}-2^{2}y^{2}-\left(x+2y\right)\left(5x-2y\right)
Expand \left(2y\right)^{2}.
9x^{2}-4y^{2}-\left(x+2y\right)\left(5x-2y\right)
Calculate 2 to the power of 2 and get 4.
9x^{2}-4y^{2}-\left(5x^{2}-2xy+10yx-4y^{2}\right)
Apply the distributive property by multiplying each term of x+2y by each term of 5x-2y.
9x^{2}-4y^{2}-\left(5x^{2}+8xy-4y^{2}\right)
Combine -2xy and 10yx to get 8xy.
9x^{2}-4y^{2}-5x^{2}-8xy-\left(-4y^{2}\right)
To find the opposite of 5x^{2}+8xy-4y^{2}, find the opposite of each term.
9x^{2}-4y^{2}-5x^{2}-8xy+4y^{2}
The opposite of -4y^{2} is 4y^{2}.
4x^{2}-4y^{2}-8xy+4y^{2}
Combine 9x^{2} and -5x^{2} to get 4x^{2}.
4x^{2}-8xy
Combine -4y^{2} and 4y^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}