Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(3x+2\right)\left(x+y-2\right)-\left(3x+2\right)^{2}\left(x+4-7\right)
Multiply 3x+2 and 3x+2 to get \left(3x+2\right)^{2}.
3x^{2}+3xy-6x+2x+2y-4-\left(3x+2\right)^{2}\left(x+4-7\right)
Apply the distributive property by multiplying each term of 3x+2 by each term of x+y-2.
3x^{2}+3xy-4x+2y-4-\left(3x+2\right)^{2}\left(x+4-7\right)
Combine -6x and 2x to get -4x.
3x^{2}+3xy-4x+2y-4-\left(9x^{2}+12x+4\right)\left(x+4-7\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
3x^{2}+3xy-4x+2y-4-\left(9x^{2}+12x+4\right)\left(x-3\right)
Subtract 7 from 4 to get -3.
3x^{2}+3xy-4x+2y-4-\left(9x^{3}-27x^{2}+12x^{2}-36x+4x-12\right)
Apply the distributive property by multiplying each term of 9x^{2}+12x+4 by each term of x-3.
3x^{2}+3xy-4x+2y-4-\left(9x^{3}-15x^{2}-36x+4x-12\right)
Combine -27x^{2} and 12x^{2} to get -15x^{2}.
3x^{2}+3xy-4x+2y-4-\left(9x^{3}-15x^{2}-32x-12\right)
Combine -36x and 4x to get -32x.
3x^{2}+3xy-4x+2y-4-9x^{3}-\left(-15x^{2}\right)-\left(-32x\right)-\left(-12\right)
To find the opposite of 9x^{3}-15x^{2}-32x-12, find the opposite of each term.
3x^{2}+3xy-4x+2y-4-9x^{3}+15x^{2}-\left(-32x\right)-\left(-12\right)
The opposite of -15x^{2} is 15x^{2}.
3x^{2}+3xy-4x+2y-4-9x^{3}+15x^{2}+32x-\left(-12\right)
The opposite of -32x is 32x.
3x^{2}+3xy-4x+2y-4-9x^{3}+15x^{2}+32x+12
The opposite of -12 is 12.
18x^{2}+3xy-4x+2y-4-9x^{3}+32x+12
Combine 3x^{2} and 15x^{2} to get 18x^{2}.
18x^{2}+3xy+28x+2y-4-9x^{3}+12
Combine -4x and 32x to get 28x.
18x^{2}+3xy+28x+2y+8-9x^{3}
Add -4 and 12 to get 8.
\left(3x+2\right)\left(x+y-2\right)-\left(3x+2\right)^{2}\left(x+4-7\right)
Multiply 3x+2 and 3x+2 to get \left(3x+2\right)^{2}.
3x^{2}+3xy-6x+2x+2y-4-\left(3x+2\right)^{2}\left(x+4-7\right)
Apply the distributive property by multiplying each term of 3x+2 by each term of x+y-2.
3x^{2}+3xy-4x+2y-4-\left(3x+2\right)^{2}\left(x+4-7\right)
Combine -6x and 2x to get -4x.
3x^{2}+3xy-4x+2y-4-\left(9x^{2}+12x+4\right)\left(x+4-7\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
3x^{2}+3xy-4x+2y-4-\left(9x^{2}+12x+4\right)\left(x-3\right)
Subtract 7 from 4 to get -3.
3x^{2}+3xy-4x+2y-4-\left(9x^{3}-27x^{2}+12x^{2}-36x+4x-12\right)
Apply the distributive property by multiplying each term of 9x^{2}+12x+4 by each term of x-3.
3x^{2}+3xy-4x+2y-4-\left(9x^{3}-15x^{2}-36x+4x-12\right)
Combine -27x^{2} and 12x^{2} to get -15x^{2}.
3x^{2}+3xy-4x+2y-4-\left(9x^{3}-15x^{2}-32x-12\right)
Combine -36x and 4x to get -32x.
3x^{2}+3xy-4x+2y-4-9x^{3}-\left(-15x^{2}\right)-\left(-32x\right)-\left(-12\right)
To find the opposite of 9x^{3}-15x^{2}-32x-12, find the opposite of each term.
3x^{2}+3xy-4x+2y-4-9x^{3}+15x^{2}-\left(-32x\right)-\left(-12\right)
The opposite of -15x^{2} is 15x^{2}.
3x^{2}+3xy-4x+2y-4-9x^{3}+15x^{2}+32x-\left(-12\right)
The opposite of -32x is 32x.
3x^{2}+3xy-4x+2y-4-9x^{3}+15x^{2}+32x+12
The opposite of -12 is 12.
18x^{2}+3xy-4x+2y-4-9x^{3}+32x+12
Combine 3x^{2} and 15x^{2} to get 18x^{2}.
18x^{2}+3xy+28x+2y-4-9x^{3}+12
Combine -4x and 32x to get 28x.
18x^{2}+3xy+28x+2y+8-9x^{3}
Add -4 and 12 to get 8.