Evaluate
\left(3x+2\right)\left(4+y+8x-3x^{2}\right)
Expand
8+2y+28x+3xy+18x^{2}-9x^{3}
Share
Copied to clipboard
\left(3x+2\right)\left(x+y-2\right)-\left(3x+2\right)^{2}\left(x+4-7\right)
Multiply 3x+2 and 3x+2 to get \left(3x+2\right)^{2}.
3x^{2}+3xy-6x+2x+2y-4-\left(3x+2\right)^{2}\left(x+4-7\right)
Apply the distributive property by multiplying each term of 3x+2 by each term of x+y-2.
3x^{2}+3xy-4x+2y-4-\left(3x+2\right)^{2}\left(x+4-7\right)
Combine -6x and 2x to get -4x.
3x^{2}+3xy-4x+2y-4-\left(9x^{2}+12x+4\right)\left(x+4-7\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
3x^{2}+3xy-4x+2y-4-\left(9x^{2}+12x+4\right)\left(x-3\right)
Subtract 7 from 4 to get -3.
3x^{2}+3xy-4x+2y-4-\left(9x^{3}-27x^{2}+12x^{2}-36x+4x-12\right)
Apply the distributive property by multiplying each term of 9x^{2}+12x+4 by each term of x-3.
3x^{2}+3xy-4x+2y-4-\left(9x^{3}-15x^{2}-36x+4x-12\right)
Combine -27x^{2} and 12x^{2} to get -15x^{2}.
3x^{2}+3xy-4x+2y-4-\left(9x^{3}-15x^{2}-32x-12\right)
Combine -36x and 4x to get -32x.
3x^{2}+3xy-4x+2y-4-9x^{3}-\left(-15x^{2}\right)-\left(-32x\right)-\left(-12\right)
To find the opposite of 9x^{3}-15x^{2}-32x-12, find the opposite of each term.
3x^{2}+3xy-4x+2y-4-9x^{3}+15x^{2}-\left(-32x\right)-\left(-12\right)
The opposite of -15x^{2} is 15x^{2}.
3x^{2}+3xy-4x+2y-4-9x^{3}+15x^{2}+32x-\left(-12\right)
The opposite of -32x is 32x.
3x^{2}+3xy-4x+2y-4-9x^{3}+15x^{2}+32x+12
The opposite of -12 is 12.
18x^{2}+3xy-4x+2y-4-9x^{3}+32x+12
Combine 3x^{2} and 15x^{2} to get 18x^{2}.
18x^{2}+3xy+28x+2y-4-9x^{3}+12
Combine -4x and 32x to get 28x.
18x^{2}+3xy+28x+2y+8-9x^{3}
Add -4 and 12 to get 8.
\left(3x+2\right)\left(x+y-2\right)-\left(3x+2\right)^{2}\left(x+4-7\right)
Multiply 3x+2 and 3x+2 to get \left(3x+2\right)^{2}.
3x^{2}+3xy-6x+2x+2y-4-\left(3x+2\right)^{2}\left(x+4-7\right)
Apply the distributive property by multiplying each term of 3x+2 by each term of x+y-2.
3x^{2}+3xy-4x+2y-4-\left(3x+2\right)^{2}\left(x+4-7\right)
Combine -6x and 2x to get -4x.
3x^{2}+3xy-4x+2y-4-\left(9x^{2}+12x+4\right)\left(x+4-7\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
3x^{2}+3xy-4x+2y-4-\left(9x^{2}+12x+4\right)\left(x-3\right)
Subtract 7 from 4 to get -3.
3x^{2}+3xy-4x+2y-4-\left(9x^{3}-27x^{2}+12x^{2}-36x+4x-12\right)
Apply the distributive property by multiplying each term of 9x^{2}+12x+4 by each term of x-3.
3x^{2}+3xy-4x+2y-4-\left(9x^{3}-15x^{2}-36x+4x-12\right)
Combine -27x^{2} and 12x^{2} to get -15x^{2}.
3x^{2}+3xy-4x+2y-4-\left(9x^{3}-15x^{2}-32x-12\right)
Combine -36x and 4x to get -32x.
3x^{2}+3xy-4x+2y-4-9x^{3}-\left(-15x^{2}\right)-\left(-32x\right)-\left(-12\right)
To find the opposite of 9x^{3}-15x^{2}-32x-12, find the opposite of each term.
3x^{2}+3xy-4x+2y-4-9x^{3}+15x^{2}-\left(-32x\right)-\left(-12\right)
The opposite of -15x^{2} is 15x^{2}.
3x^{2}+3xy-4x+2y-4-9x^{3}+15x^{2}+32x-\left(-12\right)
The opposite of -32x is 32x.
3x^{2}+3xy-4x+2y-4-9x^{3}+15x^{2}+32x+12
The opposite of -12 is 12.
18x^{2}+3xy-4x+2y-4-9x^{3}+32x+12
Combine 3x^{2} and 15x^{2} to get 18x^{2}.
18x^{2}+3xy+28x+2y-4-9x^{3}+12
Combine -4x and 32x to get 28x.
18x^{2}+3xy+28x+2y+8-9x^{3}
Add -4 and 12 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}