Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+12x+4-5\left(3x+2\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4-15x-10=0
Use the distributive property to multiply -5 by 3x+2.
9x^{2}-3x+4-10=0
Combine 12x and -15x to get -3x.
9x^{2}-3x-6=0
Subtract 10 from 4 to get -6.
3x^{2}-x-2=0
Divide both sides by 3.
a+b=-1 ab=3\left(-2\right)=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
1,-6 2,-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6.
1-6=-5 2-3=-1
Calculate the sum for each pair.
a=-3 b=2
The solution is the pair that gives sum -1.
\left(3x^{2}-3x\right)+\left(2x-2\right)
Rewrite 3x^{2}-x-2 as \left(3x^{2}-3x\right)+\left(2x-2\right).
3x\left(x-1\right)+2\left(x-1\right)
Factor out 3x in the first and 2 in the second group.
\left(x-1\right)\left(3x+2\right)
Factor out common term x-1 by using distributive property.
x=1 x=-\frac{2}{3}
To find equation solutions, solve x-1=0 and 3x+2=0.
9x^{2}+12x+4-5\left(3x+2\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4-15x-10=0
Use the distributive property to multiply -5 by 3x+2.
9x^{2}-3x+4-10=0
Combine 12x and -15x to get -3x.
9x^{2}-3x-6=0
Subtract 10 from 4 to get -6.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 9\left(-6\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -3 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 9\left(-6\right)}}{2\times 9}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-36\left(-6\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-3\right)±\sqrt{9+216}}{2\times 9}
Multiply -36 times -6.
x=\frac{-\left(-3\right)±\sqrt{225}}{2\times 9}
Add 9 to 216.
x=\frac{-\left(-3\right)±15}{2\times 9}
Take the square root of 225.
x=\frac{3±15}{2\times 9}
The opposite of -3 is 3.
x=\frac{3±15}{18}
Multiply 2 times 9.
x=\frac{18}{18}
Now solve the equation x=\frac{3±15}{18} when ± is plus. Add 3 to 15.
x=1
Divide 18 by 18.
x=-\frac{12}{18}
Now solve the equation x=\frac{3±15}{18} when ± is minus. Subtract 15 from 3.
x=-\frac{2}{3}
Reduce the fraction \frac{-12}{18} to lowest terms by extracting and canceling out 6.
x=1 x=-\frac{2}{3}
The equation is now solved.
9x^{2}+12x+4-5\left(3x+2\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4-15x-10=0
Use the distributive property to multiply -5 by 3x+2.
9x^{2}-3x+4-10=0
Combine 12x and -15x to get -3x.
9x^{2}-3x-6=0
Subtract 10 from 4 to get -6.
9x^{2}-3x=6
Add 6 to both sides. Anything plus zero gives itself.
\frac{9x^{2}-3x}{9}=\frac{6}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{3}{9}\right)x=\frac{6}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{1}{3}x=\frac{6}{9}
Reduce the fraction \frac{-3}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{1}{3}x=\frac{2}{3}
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
Add \frac{2}{3} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
Simplify.
x=1 x=-\frac{2}{3}
Add \frac{1}{6} to both sides of the equation.