( 3 x + 2 ) ^ { 2 } - 2 ( 6 x + 6,5 ) = 0
Solve for x
x=-1
x=1
Graph
Share
Copied to clipboard
9x^{2}+12x+4-2\left(6x+6,5\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4-12x-13=0
Use the distributive property to multiply -2 by 6x+6,5.
9x^{2}+4-13=0
Combine 12x and -12x to get 0.
9x^{2}-9=0
Subtract 13 from 4 to get -9.
x^{2}-1=0
Divide both sides by 9.
\left(x-1\right)\left(x+1\right)=0
Consider x^{2}-1. Rewrite x^{2}-1 as x^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
To find equation solutions, solve x-1=0 and x+1=0.
9x^{2}+12x+4-2\left(6x+6,5\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4-12x-13=0
Use the distributive property to multiply -2 by 6x+6,5.
9x^{2}+4-13=0
Combine 12x and -12x to get 0.
9x^{2}-9=0
Subtract 13 from 4 to get -9.
9x^{2}=9
Add 9 to both sides. Anything plus zero gives itself.
x^{2}=\frac{9}{9}
Divide both sides by 9.
x^{2}=1
Divide 9 by 9 to get 1.
x=1 x=-1
Take the square root of both sides of the equation.
9x^{2}+12x+4-2\left(6x+6,5\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4-12x-13=0
Use the distributive property to multiply -2 by 6x+6,5.
9x^{2}+4-13=0
Combine 12x and -12x to get 0.
9x^{2}-9=0
Subtract 13 from 4 to get -9.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-9\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-9\right)}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\left(-9\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{324}}{2\times 9}
Multiply -36 times -9.
x=\frac{0±18}{2\times 9}
Take the square root of 324.
x=\frac{0±18}{18}
Multiply 2 times 9.
x=1
Now solve the equation x=\frac{0±18}{18} when ± is plus. Divide 18 by 18.
x=-1
Now solve the equation x=\frac{0±18}{18} when ± is minus. Divide -18 by 18.
x=1 x=-1
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}