Solve for x (complex solution)
x=\frac{-4+2\sqrt{14}i}{9}\approx -0.444444444+0.831479419i
x=\frac{-2\sqrt{14}i-4}{9}\approx -0.444444444-0.831479419i
Graph
Share
Copied to clipboard
9x^{2}+12x+4=4x-4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4-4x=-4
Subtract 4x from both sides.
9x^{2}+8x+4=-4
Combine 12x and -4x to get 8x.
9x^{2}+8x+4+4=0
Add 4 to both sides.
9x^{2}+8x+8=0
Add 4 and 4 to get 8.
x=\frac{-8±\sqrt{8^{2}-4\times 9\times 8}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 8 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 9\times 8}}{2\times 9}
Square 8.
x=\frac{-8±\sqrt{64-36\times 8}}{2\times 9}
Multiply -4 times 9.
x=\frac{-8±\sqrt{64-288}}{2\times 9}
Multiply -36 times 8.
x=\frac{-8±\sqrt{-224}}{2\times 9}
Add 64 to -288.
x=\frac{-8±4\sqrt{14}i}{2\times 9}
Take the square root of -224.
x=\frac{-8±4\sqrt{14}i}{18}
Multiply 2 times 9.
x=\frac{-8+4\sqrt{14}i}{18}
Now solve the equation x=\frac{-8±4\sqrt{14}i}{18} when ± is plus. Add -8 to 4i\sqrt{14}.
x=\frac{-4+2\sqrt{14}i}{9}
Divide -8+4i\sqrt{14} by 18.
x=\frac{-4\sqrt{14}i-8}{18}
Now solve the equation x=\frac{-8±4\sqrt{14}i}{18} when ± is minus. Subtract 4i\sqrt{14} from -8.
x=\frac{-2\sqrt{14}i-4}{9}
Divide -8-4i\sqrt{14} by 18.
x=\frac{-4+2\sqrt{14}i}{9} x=\frac{-2\sqrt{14}i-4}{9}
The equation is now solved.
9x^{2}+12x+4=4x-4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4-4x=-4
Subtract 4x from both sides.
9x^{2}+8x+4=-4
Combine 12x and -4x to get 8x.
9x^{2}+8x=-4-4
Subtract 4 from both sides.
9x^{2}+8x=-8
Subtract 4 from -4 to get -8.
\frac{9x^{2}+8x}{9}=-\frac{8}{9}
Divide both sides by 9.
x^{2}+\frac{8}{9}x=-\frac{8}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{8}{9}x+\left(\frac{4}{9}\right)^{2}=-\frac{8}{9}+\left(\frac{4}{9}\right)^{2}
Divide \frac{8}{9}, the coefficient of the x term, by 2 to get \frac{4}{9}. Then add the square of \frac{4}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{9}x+\frac{16}{81}=-\frac{8}{9}+\frac{16}{81}
Square \frac{4}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{9}x+\frac{16}{81}=-\frac{56}{81}
Add -\frac{8}{9} to \frac{16}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4}{9}\right)^{2}=-\frac{56}{81}
Factor x^{2}+\frac{8}{9}x+\frac{16}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{9}\right)^{2}}=\sqrt{-\frac{56}{81}}
Take the square root of both sides of the equation.
x+\frac{4}{9}=\frac{2\sqrt{14}i}{9} x+\frac{4}{9}=-\frac{2\sqrt{14}i}{9}
Simplify.
x=\frac{-4+2\sqrt{14}i}{9} x=\frac{-2\sqrt{14}i-4}{9}
Subtract \frac{4}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}