Solve for x
x=-3
x=0
Graph
Share
Copied to clipboard
9x^{2}+12x+4+5\left(3x+2\right)-14=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4+15x+10-14=0
Use the distributive property to multiply 5 by 3x+2.
9x^{2}+27x+4+10-14=0
Combine 12x and 15x to get 27x.
9x^{2}+27x+14-14=0
Add 4 and 10 to get 14.
9x^{2}+27x=0
Subtract 14 from 14 to get 0.
x\left(9x+27\right)=0
Factor out x.
x=0 x=-3
To find equation solutions, solve x=0 and 9x+27=0.
9x^{2}+12x+4+5\left(3x+2\right)-14=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4+15x+10-14=0
Use the distributive property to multiply 5 by 3x+2.
9x^{2}+27x+4+10-14=0
Combine 12x and 15x to get 27x.
9x^{2}+27x+14-14=0
Add 4 and 10 to get 14.
9x^{2}+27x=0
Subtract 14 from 14 to get 0.
x=\frac{-27±\sqrt{27^{2}}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 27 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27±27}{2\times 9}
Take the square root of 27^{2}.
x=\frac{-27±27}{18}
Multiply 2 times 9.
x=\frac{0}{18}
Now solve the equation x=\frac{-27±27}{18} when ± is plus. Add -27 to 27.
x=0
Divide 0 by 18.
x=-\frac{54}{18}
Now solve the equation x=\frac{-27±27}{18} when ± is minus. Subtract 27 from -27.
x=-3
Divide -54 by 18.
x=0 x=-3
The equation is now solved.
9x^{2}+12x+4+5\left(3x+2\right)-14=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4+15x+10-14=0
Use the distributive property to multiply 5 by 3x+2.
9x^{2}+27x+4+10-14=0
Combine 12x and 15x to get 27x.
9x^{2}+27x+14-14=0
Add 4 and 10 to get 14.
9x^{2}+27x=0
Subtract 14 from 14 to get 0.
\frac{9x^{2}+27x}{9}=\frac{0}{9}
Divide both sides by 9.
x^{2}+\frac{27}{9}x=\frac{0}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+3x=\frac{0}{9}
Divide 27 by 9.
x^{2}+3x=0
Divide 0 by 9.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{3}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{3}{2} x+\frac{3}{2}=-\frac{3}{2}
Simplify.
x=0 x=-3
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}