Solve for x
x=-\frac{1}{3}\approx -0.333333333
x=\frac{3}{4}=0.75
Graph
Share
Copied to clipboard
15x^{2}-4x-3=x\left(3x+1\right)
Use the distributive property to multiply 3x+1 by 5x-3 and combine like terms.
15x^{2}-4x-3=3x^{2}+x
Use the distributive property to multiply x by 3x+1.
15x^{2}-4x-3-3x^{2}=x
Subtract 3x^{2} from both sides.
12x^{2}-4x-3=x
Combine 15x^{2} and -3x^{2} to get 12x^{2}.
12x^{2}-4x-3-x=0
Subtract x from both sides.
12x^{2}-5x-3=0
Combine -4x and -x to get -5x.
a+b=-5 ab=12\left(-3\right)=-36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 12x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
1,-36 2,-18 3,-12 4,-9 6,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Calculate the sum for each pair.
a=-9 b=4
The solution is the pair that gives sum -5.
\left(12x^{2}-9x\right)+\left(4x-3\right)
Rewrite 12x^{2}-5x-3 as \left(12x^{2}-9x\right)+\left(4x-3\right).
3x\left(4x-3\right)+4x-3
Factor out 3x in 12x^{2}-9x.
\left(4x-3\right)\left(3x+1\right)
Factor out common term 4x-3 by using distributive property.
x=\frac{3}{4} x=-\frac{1}{3}
To find equation solutions, solve 4x-3=0 and 3x+1=0.
15x^{2}-4x-3=x\left(3x+1\right)
Use the distributive property to multiply 3x+1 by 5x-3 and combine like terms.
15x^{2}-4x-3=3x^{2}+x
Use the distributive property to multiply x by 3x+1.
15x^{2}-4x-3-3x^{2}=x
Subtract 3x^{2} from both sides.
12x^{2}-4x-3=x
Combine 15x^{2} and -3x^{2} to get 12x^{2}.
12x^{2}-4x-3-x=0
Subtract x from both sides.
12x^{2}-5x-3=0
Combine -4x and -x to get -5x.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 12\left(-3\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -5 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 12\left(-3\right)}}{2\times 12}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-48\left(-3\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\times 12}
Multiply -48 times -3.
x=\frac{-\left(-5\right)±\sqrt{169}}{2\times 12}
Add 25 to 144.
x=\frac{-\left(-5\right)±13}{2\times 12}
Take the square root of 169.
x=\frac{5±13}{2\times 12}
The opposite of -5 is 5.
x=\frac{5±13}{24}
Multiply 2 times 12.
x=\frac{18}{24}
Now solve the equation x=\frac{5±13}{24} when ± is plus. Add 5 to 13.
x=\frac{3}{4}
Reduce the fraction \frac{18}{24} to lowest terms by extracting and canceling out 6.
x=-\frac{8}{24}
Now solve the equation x=\frac{5±13}{24} when ± is minus. Subtract 13 from 5.
x=-\frac{1}{3}
Reduce the fraction \frac{-8}{24} to lowest terms by extracting and canceling out 8.
x=\frac{3}{4} x=-\frac{1}{3}
The equation is now solved.
15x^{2}-4x-3=x\left(3x+1\right)
Use the distributive property to multiply 3x+1 by 5x-3 and combine like terms.
15x^{2}-4x-3=3x^{2}+x
Use the distributive property to multiply x by 3x+1.
15x^{2}-4x-3-3x^{2}=x
Subtract 3x^{2} from both sides.
12x^{2}-4x-3=x
Combine 15x^{2} and -3x^{2} to get 12x^{2}.
12x^{2}-4x-3-x=0
Subtract x from both sides.
12x^{2}-5x-3=0
Combine -4x and -x to get -5x.
12x^{2}-5x=3
Add 3 to both sides. Anything plus zero gives itself.
\frac{12x^{2}-5x}{12}=\frac{3}{12}
Divide both sides by 12.
x^{2}-\frac{5}{12}x=\frac{3}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{5}{12}x=\frac{1}{4}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{5}{12}x+\left(-\frac{5}{24}\right)^{2}=\frac{1}{4}+\left(-\frac{5}{24}\right)^{2}
Divide -\frac{5}{12}, the coefficient of the x term, by 2 to get -\frac{5}{24}. Then add the square of -\frac{5}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{12}x+\frac{25}{576}=\frac{1}{4}+\frac{25}{576}
Square -\frac{5}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{12}x+\frac{25}{576}=\frac{169}{576}
Add \frac{1}{4} to \frac{25}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{24}\right)^{2}=\frac{169}{576}
Factor x^{2}-\frac{5}{12}x+\frac{25}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{24}\right)^{2}}=\sqrt{\frac{169}{576}}
Take the square root of both sides of the equation.
x-\frac{5}{24}=\frac{13}{24} x-\frac{5}{24}=-\frac{13}{24}
Simplify.
x=\frac{3}{4} x=-\frac{1}{3}
Add \frac{5}{24} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}