Solve for x
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
Graph
Share
Copied to clipboard
9x^{2}+6x+1=3\left(3x^{2}+x-2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
9x^{2}+6x+1=9x^{2}+3x-6
Use the distributive property to multiply 3 by 3x^{2}+x-2.
9x^{2}+6x+1-9x^{2}=3x-6
Subtract 9x^{2} from both sides.
6x+1=3x-6
Combine 9x^{2} and -9x^{2} to get 0.
6x+1-3x=-6
Subtract 3x from both sides.
3x+1=-6
Combine 6x and -3x to get 3x.
3x=-6-1
Subtract 1 from both sides.
3x=-7
Subtract 1 from -6 to get -7.
x=\frac{-7}{3}
Divide both sides by 3.
x=-\frac{7}{3}
Fraction \frac{-7}{3} can be rewritten as -\frac{7}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}