Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{2\times 3x}{2}+\frac{y}{2}\right)\left(-\frac{y}{2}+3x\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x times \frac{2}{2}.
\frac{2\times 3x+y}{2}\left(-\frac{y}{2}+3x\right)
Since \frac{2\times 3x}{2} and \frac{y}{2} have the same denominator, add them by adding their numerators.
\frac{6x+y}{2}\left(-\frac{y}{2}+3x\right)
Do the multiplications in 2\times 3x+y.
\frac{6x+y}{2}\left(-\frac{y}{2}+\frac{2\times 3x}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x times \frac{2}{2}.
\frac{6x+y}{2}\times \frac{-y+2\times 3x}{2}
Since -\frac{y}{2} and \frac{2\times 3x}{2} have the same denominator, add them by adding their numerators.
\frac{6x+y}{2}\times \frac{-y+6x}{2}
Do the multiplications in -y+2\times 3x.
\frac{\left(6x+y\right)\left(-y+6x\right)}{2\times 2}
Multiply \frac{6x+y}{2} times \frac{-y+6x}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(6x+y\right)\left(-y+6x\right)}{4}
Multiply 2 and 2 to get 4.
\frac{-6xy+36x^{2}-y^{2}+6yx}{4}
Apply the distributive property by multiplying each term of 6x+y by each term of -y+6x.
\frac{36x^{2}-y^{2}}{4}
Combine -6xy and 6yx to get 0.
\left(\frac{2\times 3x}{2}+\frac{y}{2}\right)\left(-\frac{y}{2}+3x\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x times \frac{2}{2}.
\frac{2\times 3x+y}{2}\left(-\frac{y}{2}+3x\right)
Since \frac{2\times 3x}{2} and \frac{y}{2} have the same denominator, add them by adding their numerators.
\frac{6x+y}{2}\left(-\frac{y}{2}+3x\right)
Do the multiplications in 2\times 3x+y.
\frac{6x+y}{2}\left(-\frac{y}{2}+\frac{2\times 3x}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x times \frac{2}{2}.
\frac{6x+y}{2}\times \frac{-y+2\times 3x}{2}
Since -\frac{y}{2} and \frac{2\times 3x}{2} have the same denominator, add them by adding their numerators.
\frac{6x+y}{2}\times \frac{-y+6x}{2}
Do the multiplications in -y+2\times 3x.
\frac{\left(6x+y\right)\left(-y+6x\right)}{2\times 2}
Multiply \frac{6x+y}{2} times \frac{-y+6x}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(6x+y\right)\left(-y+6x\right)}{4}
Multiply 2 and 2 to get 4.
\frac{-6xy+36x^{2}-y^{2}+6yx}{4}
Apply the distributive property by multiplying each term of 6x+y by each term of -y+6x.
\frac{36x^{2}-y^{2}}{4}
Combine -6xy and 6yx to get 0.