Evaluate
\frac{\left(3x^{3}+4\right)\left(9x^{3}+12x+16\right)}{x^{3}}
Expand
27x^{3}+36x+84+\frac{48}{x^{2}}+\frac{64}{x^{3}}
Graph
Share
Copied to clipboard
\left(\frac{3xx^{2}}{x^{2}}+\frac{4}{x^{2}}\right)\left(9x^{2}+12+\frac{16}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x times \frac{x^{2}}{x^{2}}.
\frac{3xx^{2}+4}{x^{2}}\left(9x^{2}+12+\frac{16}{x}\right)
Since \frac{3xx^{2}}{x^{2}} and \frac{4}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{3x^{3}+4}{x^{2}}\left(9x^{2}+12+\frac{16}{x}\right)
Do the multiplications in 3xx^{2}+4.
\frac{3x^{3}+4}{x^{2}}\left(\frac{\left(9x^{2}+12\right)x}{x}+\frac{16}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 9x^{2}+12 times \frac{x}{x}.
\frac{3x^{3}+4}{x^{2}}\times \frac{\left(9x^{2}+12\right)x+16}{x}
Since \frac{\left(9x^{2}+12\right)x}{x} and \frac{16}{x} have the same denominator, add them by adding their numerators.
\frac{3x^{3}+4}{x^{2}}\times \frac{9x^{3}+12x+16}{x}
Do the multiplications in \left(9x^{2}+12\right)x+16.
\frac{\left(3x^{3}+4\right)\left(9x^{3}+12x+16\right)}{x^{2}x}
Multiply \frac{3x^{3}+4}{x^{2}} times \frac{9x^{3}+12x+16}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3x^{3}+4\right)\left(9x^{3}+12x+16\right)}{x^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{27x^{6}+36x^{4}+84x^{3}+48x+64}{x^{3}}
Use the distributive property to multiply 3x^{3}+4 by 9x^{3}+12x+16 and combine like terms.
\left(\frac{3xx^{2}}{x^{2}}+\frac{4}{x^{2}}\right)\left(9x^{2}+12+\frac{16}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x times \frac{x^{2}}{x^{2}}.
\frac{3xx^{2}+4}{x^{2}}\left(9x^{2}+12+\frac{16}{x}\right)
Since \frac{3xx^{2}}{x^{2}} and \frac{4}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{3x^{3}+4}{x^{2}}\left(9x^{2}+12+\frac{16}{x}\right)
Do the multiplications in 3xx^{2}+4.
\frac{3x^{3}+4}{x^{2}}\left(\frac{\left(9x^{2}+12\right)x}{x}+\frac{16}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 9x^{2}+12 times \frac{x}{x}.
\frac{3x^{3}+4}{x^{2}}\times \frac{\left(9x^{2}+12\right)x+16}{x}
Since \frac{\left(9x^{2}+12\right)x}{x} and \frac{16}{x} have the same denominator, add them by adding their numerators.
\frac{3x^{3}+4}{x^{2}}\times \frac{9x^{3}+12x+16}{x}
Do the multiplications in \left(9x^{2}+12\right)x+16.
\frac{\left(3x^{3}+4\right)\left(9x^{3}+12x+16\right)}{x^{2}x}
Multiply \frac{3x^{3}+4}{x^{2}} times \frac{9x^{3}+12x+16}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3x^{3}+4\right)\left(9x^{3}+12x+16\right)}{x^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{27x^{6}+36x^{4}+84x^{3}+48x+64}{x^{3}}
Use the distributive property to multiply 3x^{3}+4 by 9x^{3}+12x+16 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}