Solve for x
x = \frac{266}{93} = 2\frac{80}{93} \approx 2.860215054
Graph
Share
Copied to clipboard
3x+\frac{13}{31}=1\times 8+1
Multiply both sides of the equation by 8.
3x+\frac{13}{31}=8+1
Multiply 1 and 8 to get 8.
3x+\frac{13}{31}=9
Add 8 and 1 to get 9.
3x=9-\frac{13}{31}
Subtract \frac{13}{31} from both sides.
3x=\frac{279}{31}-\frac{13}{31}
Convert 9 to fraction \frac{279}{31}.
3x=\frac{279-13}{31}
Since \frac{279}{31} and \frac{13}{31} have the same denominator, subtract them by subtracting their numerators.
3x=\frac{266}{31}
Subtract 13 from 279 to get 266.
x=\frac{\frac{266}{31}}{3}
Divide both sides by 3.
x=\frac{266}{31\times 3}
Express \frac{\frac{266}{31}}{3} as a single fraction.
x=\frac{266}{93}
Multiply 31 and 3 to get 93.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}