Solve for s
s = \frac{14}{3} = 4\frac{2}{3} \approx 4.666666667
s=0
Share
Copied to clipboard
9s^{2}-42s+49-49=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3s-7\right)^{2}.
9s^{2}-42s=0
Subtract 49 from 49 to get 0.
s\left(9s-42\right)=0
Factor out s.
s=0 s=\frac{14}{3}
To find equation solutions, solve s=0 and 9s-42=0.
9s^{2}-42s+49-49=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3s-7\right)^{2}.
9s^{2}-42s=0
Subtract 49 from 49 to get 0.
s=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -42 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-\left(-42\right)±42}{2\times 9}
Take the square root of \left(-42\right)^{2}.
s=\frac{42±42}{2\times 9}
The opposite of -42 is 42.
s=\frac{42±42}{18}
Multiply 2 times 9.
s=\frac{84}{18}
Now solve the equation s=\frac{42±42}{18} when ± is plus. Add 42 to 42.
s=\frac{14}{3}
Reduce the fraction \frac{84}{18} to lowest terms by extracting and canceling out 6.
s=\frac{0}{18}
Now solve the equation s=\frac{42±42}{18} when ± is minus. Subtract 42 from 42.
s=0
Divide 0 by 18.
s=\frac{14}{3} s=0
The equation is now solved.
9s^{2}-42s+49-49=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3s-7\right)^{2}.
9s^{2}-42s=0
Subtract 49 from 49 to get 0.
\frac{9s^{2}-42s}{9}=\frac{0}{9}
Divide both sides by 9.
s^{2}+\left(-\frac{42}{9}\right)s=\frac{0}{9}
Dividing by 9 undoes the multiplication by 9.
s^{2}-\frac{14}{3}s=\frac{0}{9}
Reduce the fraction \frac{-42}{9} to lowest terms by extracting and canceling out 3.
s^{2}-\frac{14}{3}s=0
Divide 0 by 9.
s^{2}-\frac{14}{3}s+\left(-\frac{7}{3}\right)^{2}=\left(-\frac{7}{3}\right)^{2}
Divide -\frac{14}{3}, the coefficient of the x term, by 2 to get -\frac{7}{3}. Then add the square of -\frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
s^{2}-\frac{14}{3}s+\frac{49}{9}=\frac{49}{9}
Square -\frac{7}{3} by squaring both the numerator and the denominator of the fraction.
\left(s-\frac{7}{3}\right)^{2}=\frac{49}{9}
Factor s^{2}-\frac{14}{3}s+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s-\frac{7}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
Take the square root of both sides of the equation.
s-\frac{7}{3}=\frac{7}{3} s-\frac{7}{3}=-\frac{7}{3}
Simplify.
s=\frac{14}{3} s=0
Add \frac{7}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}