Factor
\left(s+1\right)\left(3s+7\right)
Evaluate
\left(s+1\right)\left(3s+7\right)
Share
Copied to clipboard
3s^{2}+10s+7
Multiply and combine like terms.
a+b=10 ab=3\times 7=21
Factor the expression by grouping. First, the expression needs to be rewritten as 3s^{2}+as+bs+7. To find a and b, set up a system to be solved.
1,21 3,7
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 21.
1+21=22 3+7=10
Calculate the sum for each pair.
a=3 b=7
The solution is the pair that gives sum 10.
\left(3s^{2}+3s\right)+\left(7s+7\right)
Rewrite 3s^{2}+10s+7 as \left(3s^{2}+3s\right)+\left(7s+7\right).
3s\left(s+1\right)+7\left(s+1\right)
Factor out 3s in the first and 7 in the second group.
\left(s+1\right)\left(3s+7\right)
Factor out common term s+1 by using distributive property.
3s^{2}+10s+7
Combine 3s and 7s to get 10s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}