Evaluate
x+6n_{2}
Expand
x+6n_{2}
Graph
Share
Copied to clipboard
3n_{2}-2x+5m-\left(-3x\right)-5m-\left(-3n_{2}\right)
To find the opposite of -3x+5m-3n_{2}, find the opposite of each term.
3n_{2}-2x+5m+3x-5m-\left(-3n_{2}\right)
The opposite of -3x is 3x.
3n_{2}-2x+5m+3x-5m+3n_{2}
The opposite of -3n_{2} is 3n_{2}.
3n_{2}+x+5m-5m+3n_{2}
Combine -2x and 3x to get x.
3n_{2}+x+3n_{2}
Combine 5m and -5m to get 0.
6n_{2}+x
Combine 3n_{2} and 3n_{2} to get 6n_{2}.
3n_{2}-2x+5m-\left(-3x\right)-5m-\left(-3n_{2}\right)
To find the opposite of -3x+5m-3n_{2}, find the opposite of each term.
3n_{2}-2x+5m+3x-5m-\left(-3n_{2}\right)
The opposite of -3x is 3x.
3n_{2}-2x+5m+3x-5m+3n_{2}
The opposite of -3n_{2} is 3n_{2}.
3n_{2}+x+5m-5m+3n_{2}
Combine -2x and 3x to get x.
3n_{2}+x+3n_{2}
Combine 5m and -5m to get 0.
6n_{2}+x
Combine 3n_{2} and 3n_{2} to get 6n_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}