Solve for n
n=1
Share
Copied to clipboard
3^{2}n^{2}-\left(-2\right)-\sqrt{100}=\left(3n-2\right)^{2}
Expand \left(3n\right)^{2}.
9n^{2}-\left(-2\right)-\sqrt{100}=\left(3n-2\right)^{2}
Calculate 3 to the power of 2 and get 9.
9n^{2}+2-\sqrt{100}=\left(3n-2\right)^{2}
The opposite of -2 is 2.
9n^{2}+2-10=\left(3n-2\right)^{2}
Calculate the square root of 100 and get 10.
9n^{2}-8=\left(3n-2\right)^{2}
Subtract 10 from 2 to get -8.
9n^{2}-8=9n^{2}-12n+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3n-2\right)^{2}.
9n^{2}-8-9n^{2}=-12n+4
Subtract 9n^{2} from both sides.
-8=-12n+4
Combine 9n^{2} and -9n^{2} to get 0.
-12n+4=-8
Swap sides so that all variable terms are on the left hand side.
-12n=-8-4
Subtract 4 from both sides.
-12n=-12
Subtract 4 from -8 to get -12.
n=\frac{-12}{-12}
Divide both sides by -12.
n=1
Divide -12 by -12 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}