Evaluate
7n^{2}-6n-7
Factor
7\left(n-\frac{3-\sqrt{58}}{7}\right)\left(n-\frac{\sqrt{58}+3}{7}\right)
Share
Copied to clipboard
7n^{2}-7n+4+n-11
Combine 3n^{2} and 4n^{2} to get 7n^{2}.
7n^{2}-6n+4-11
Combine -7n and n to get -6n.
7n^{2}-6n-7
Subtract 11 from 4 to get -7.
factor(7n^{2}-7n+4+n-11)
Combine 3n^{2} and 4n^{2} to get 7n^{2}.
factor(7n^{2}-6n+4-11)
Combine -7n and n to get -6n.
factor(7n^{2}-6n-7)
Subtract 11 from 4 to get -7.
7n^{2}-6n-7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 7\left(-7\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-6\right)±\sqrt{36-4\times 7\left(-7\right)}}{2\times 7}
Square -6.
n=\frac{-\left(-6\right)±\sqrt{36-28\left(-7\right)}}{2\times 7}
Multiply -4 times 7.
n=\frac{-\left(-6\right)±\sqrt{36+196}}{2\times 7}
Multiply -28 times -7.
n=\frac{-\left(-6\right)±\sqrt{232}}{2\times 7}
Add 36 to 196.
n=\frac{-\left(-6\right)±2\sqrt{58}}{2\times 7}
Take the square root of 232.
n=\frac{6±2\sqrt{58}}{2\times 7}
The opposite of -6 is 6.
n=\frac{6±2\sqrt{58}}{14}
Multiply 2 times 7.
n=\frac{2\sqrt{58}+6}{14}
Now solve the equation n=\frac{6±2\sqrt{58}}{14} when ± is plus. Add 6 to 2\sqrt{58}.
n=\frac{\sqrt{58}+3}{7}
Divide 6+2\sqrt{58} by 14.
n=\frac{6-2\sqrt{58}}{14}
Now solve the equation n=\frac{6±2\sqrt{58}}{14} when ± is minus. Subtract 2\sqrt{58} from 6.
n=\frac{3-\sqrt{58}}{7}
Divide 6-2\sqrt{58} by 14.
7n^{2}-6n-7=7\left(n-\frac{\sqrt{58}+3}{7}\right)\left(n-\frac{3-\sqrt{58}}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3+\sqrt{58}}{7} for x_{1} and \frac{3-\sqrt{58}}{7} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}