Evaluate
9m^{2}-16
Differentiate w.r.t. m
18m
Share
Copied to clipboard
\left(3m-\sqrt{16}\right)\left(3m+\sqrt{11+4+1}\right)
Subtract 9 from 25 to get 16.
\left(3m-4\right)\left(3m+\sqrt{11+4+1}\right)
Calculate the square root of 16 and get 4.
\left(3m-4\right)\left(3m+\sqrt{15+1}\right)
Add 11 and 4 to get 15.
\left(3m-4\right)\left(3m+\sqrt{16}\right)
Add 15 and 1 to get 16.
\left(3m-4\right)\left(3m+4\right)
Calculate the square root of 16 and get 4.
\left(3m\right)^{2}-4^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}m^{2}-4^{2}
Expand \left(3m\right)^{2}.
9m^{2}-4^{2}
Calculate 3 to the power of 2 and get 9.
9m^{2}-16
Calculate 4 to the power of 2 and get 16.
\frac{\mathrm{d}}{\mathrm{d}m}(\left(3m-\sqrt{16}\right)\left(3m+\sqrt{11+4+1}\right))
Subtract 9 from 25 to get 16.
\frac{\mathrm{d}}{\mathrm{d}m}(\left(3m-4\right)\left(3m+\sqrt{11+4+1}\right))
Calculate the square root of 16 and get 4.
\frac{\mathrm{d}}{\mathrm{d}m}(\left(3m-4\right)\left(3m+\sqrt{15+1}\right))
Add 11 and 4 to get 15.
\frac{\mathrm{d}}{\mathrm{d}m}(\left(3m-4\right)\left(3m+\sqrt{16}\right))
Add 15 and 1 to get 16.
\frac{\mathrm{d}}{\mathrm{d}m}(\left(3m-4\right)\left(3m+4\right))
Calculate the square root of 16 and get 4.
\frac{\mathrm{d}}{\mathrm{d}m}(\left(3m\right)^{2}-4^{2})
Consider \left(3m-4\right)\left(3m+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}m}(3^{2}m^{2}-4^{2})
Expand \left(3m\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}m}(9m^{2}-4^{2})
Calculate 3 to the power of 2 and get 9.
\frac{\mathrm{d}}{\mathrm{d}m}(9m^{2}-16)
Calculate 4 to the power of 2 and get 16.
2\times 9m^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
18m^{2-1}
Multiply 2 times 9.
18m^{1}
Subtract 1 from 2.
18m
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}