Evaluate
\left(3m-4\right)^{3}m^{9}
Expand
27m^{12}-108m^{11}+144m^{10}-64m^{9}
Share
Copied to clipboard
27\left(m^{4}\right)^{3}-108\left(m^{4}\right)^{2}m^{3}+144m^{4}\left(m^{3}\right)^{2}-64\left(m^{3}\right)^{3}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(3m^{4}-4m^{3}\right)^{3}.
27m^{12}-108\left(m^{4}\right)^{2}m^{3}+144m^{4}\left(m^{3}\right)^{2}-64\left(m^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
27m^{12}-108m^{8}m^{3}+144m^{4}\left(m^{3}\right)^{2}-64\left(m^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
27m^{12}-108m^{11}+144m^{4}\left(m^{3}\right)^{2}-64\left(m^{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 8 and 3 to get 11.
27m^{12}-108m^{11}+144m^{4}m^{6}-64\left(m^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
27m^{12}-108m^{11}+144m^{10}-64\left(m^{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 4 and 6 to get 10.
27m^{12}-108m^{11}+144m^{10}-64m^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
27\left(m^{4}\right)^{3}-108\left(m^{4}\right)^{2}m^{3}+144m^{4}\left(m^{3}\right)^{2}-64\left(m^{3}\right)^{3}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(3m^{4}-4m^{3}\right)^{3}.
27m^{12}-108\left(m^{4}\right)^{2}m^{3}+144m^{4}\left(m^{3}\right)^{2}-64\left(m^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
27m^{12}-108m^{8}m^{3}+144m^{4}\left(m^{3}\right)^{2}-64\left(m^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
27m^{12}-108m^{11}+144m^{4}\left(m^{3}\right)^{2}-64\left(m^{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 8 and 3 to get 11.
27m^{12}-108m^{11}+144m^{4}m^{6}-64\left(m^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
27m^{12}-108m^{11}+144m^{10}-64\left(m^{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 4 and 6 to get 10.
27m^{12}-108m^{11}+144m^{10}-64m^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}