Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3^{2}\left(m^{2}\right)^{2}n^{2}\left(-2m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
Expand \left(3m^{2}n\right)^{2}.
\frac{3^{2}m^{4}n^{2}\left(-2m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9m^{4}n^{2}\left(-2m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{9m^{4}n^{2}\left(-2\right)^{3}\left(m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
Expand \left(-2m^{2}\right)^{3}.
\frac{9m^{4}n^{2}\left(-2\right)^{3}m^{6}}{\left(\left(-m^{2}\right)n\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{9m^{4}n^{2}\left(-8\right)m^{6}}{\left(\left(-m^{2}\right)n\right)^{2}}
Calculate -2 to the power of 3 and get -8.
\frac{-72m^{4}n^{2}m^{6}}{\left(\left(-m^{2}\right)n\right)^{2}}
Multiply 9 and -8 to get -72.
\frac{-72m^{10}n^{2}}{\left(\left(-m^{2}\right)n\right)^{2}}
To multiply powers of the same base, add their exponents. Add 4 and 6 to get 10.
\frac{-72m^{10}n^{2}}{\left(-m^{2}\right)^{2}n^{2}}
Expand \left(\left(-m^{2}\right)n\right)^{2}.
\frac{-72m^{10}n^{2}}{\left(m^{2}\right)^{2}n^{2}}
Calculate -m^{2} to the power of 2 and get \left(m^{2}\right)^{2}.
\frac{-72m^{10}}{\left(m^{2}\right)^{2}}
Cancel out n^{2} in both numerator and denominator.
\frac{-72m^{10}}{m^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-72m^{6}
Cancel out m^{4} in both numerator and denominator.
\frac{3^{2}\left(m^{2}\right)^{2}n^{2}\left(-2m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
Expand \left(3m^{2}n\right)^{2}.
\frac{3^{2}m^{4}n^{2}\left(-2m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9m^{4}n^{2}\left(-2m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{9m^{4}n^{2}\left(-2\right)^{3}\left(m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
Expand \left(-2m^{2}\right)^{3}.
\frac{9m^{4}n^{2}\left(-2\right)^{3}m^{6}}{\left(\left(-m^{2}\right)n\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{9m^{4}n^{2}\left(-8\right)m^{6}}{\left(\left(-m^{2}\right)n\right)^{2}}
Calculate -2 to the power of 3 and get -8.
\frac{-72m^{4}n^{2}m^{6}}{\left(\left(-m^{2}\right)n\right)^{2}}
Multiply 9 and -8 to get -72.
\frac{-72m^{10}n^{2}}{\left(\left(-m^{2}\right)n\right)^{2}}
To multiply powers of the same base, add their exponents. Add 4 and 6 to get 10.
\frac{-72m^{10}n^{2}}{\left(-m^{2}\right)^{2}n^{2}}
Expand \left(\left(-m^{2}\right)n\right)^{2}.
\frac{-72m^{10}n^{2}}{\left(m^{2}\right)^{2}n^{2}}
Calculate -m^{2} to the power of 2 and get \left(m^{2}\right)^{2}.
\frac{-72m^{10}}{\left(m^{2}\right)^{2}}
Cancel out n^{2} in both numerator and denominator.
\frac{-72m^{10}}{m^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-72m^{6}
Cancel out m^{4} in both numerator and denominator.