Evaluate
-72m^{6}
Expand
-72m^{6}
Share
Copied to clipboard
\frac{3^{2}\left(m^{2}\right)^{2}n^{2}\left(-2m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
Expand \left(3m^{2}n\right)^{2}.
\frac{3^{2}m^{4}n^{2}\left(-2m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9m^{4}n^{2}\left(-2m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{9m^{4}n^{2}\left(-2\right)^{3}\left(m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
Expand \left(-2m^{2}\right)^{3}.
\frac{9m^{4}n^{2}\left(-2\right)^{3}m^{6}}{\left(\left(-m^{2}\right)n\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{9m^{4}n^{2}\left(-8\right)m^{6}}{\left(\left(-m^{2}\right)n\right)^{2}}
Calculate -2 to the power of 3 and get -8.
\frac{-72m^{4}n^{2}m^{6}}{\left(\left(-m^{2}\right)n\right)^{2}}
Multiply 9 and -8 to get -72.
\frac{-72m^{10}n^{2}}{\left(\left(-m^{2}\right)n\right)^{2}}
To multiply powers of the same base, add their exponents. Add 4 and 6 to get 10.
\frac{-72m^{10}n^{2}}{\left(-m^{2}\right)^{2}n^{2}}
Expand \left(\left(-m^{2}\right)n\right)^{2}.
\frac{-72m^{10}n^{2}}{\left(m^{2}\right)^{2}n^{2}}
Calculate -m^{2} to the power of 2 and get \left(m^{2}\right)^{2}.
\frac{-72m^{10}}{\left(m^{2}\right)^{2}}
Cancel out n^{2} in both numerator and denominator.
\frac{-72m^{10}}{m^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-72m^{6}
Cancel out m^{4} in both numerator and denominator.
\frac{3^{2}\left(m^{2}\right)^{2}n^{2}\left(-2m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
Expand \left(3m^{2}n\right)^{2}.
\frac{3^{2}m^{4}n^{2}\left(-2m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9m^{4}n^{2}\left(-2m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{9m^{4}n^{2}\left(-2\right)^{3}\left(m^{2}\right)^{3}}{\left(\left(-m^{2}\right)n\right)^{2}}
Expand \left(-2m^{2}\right)^{3}.
\frac{9m^{4}n^{2}\left(-2\right)^{3}m^{6}}{\left(\left(-m^{2}\right)n\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{9m^{4}n^{2}\left(-8\right)m^{6}}{\left(\left(-m^{2}\right)n\right)^{2}}
Calculate -2 to the power of 3 and get -8.
\frac{-72m^{4}n^{2}m^{6}}{\left(\left(-m^{2}\right)n\right)^{2}}
Multiply 9 and -8 to get -72.
\frac{-72m^{10}n^{2}}{\left(\left(-m^{2}\right)n\right)^{2}}
To multiply powers of the same base, add their exponents. Add 4 and 6 to get 10.
\frac{-72m^{10}n^{2}}{\left(-m^{2}\right)^{2}n^{2}}
Expand \left(\left(-m^{2}\right)n\right)^{2}.
\frac{-72m^{10}n^{2}}{\left(m^{2}\right)^{2}n^{2}}
Calculate -m^{2} to the power of 2 and get \left(m^{2}\right)^{2}.
\frac{-72m^{10}}{\left(m^{2}\right)^{2}}
Cancel out n^{2} in both numerator and denominator.
\frac{-72m^{10}}{m^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-72m^{6}
Cancel out m^{4} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}