Solve for k
k=-\frac{x^{2}+5}{x\left(3x+4\right)}
x\neq -\frac{4}{3}\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{4k^{2}-15k-5}-2k}{3k+1}\text{; }x=-\frac{\sqrt{4k^{2}-15k-5}+2k}{3k+1}\text{, }&k\neq -\frac{1}{3}\\x=\frac{15}{4}\text{, }&k=-\frac{1}{3}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{4k^{2}-15k-5}-2k}{3k+1}\text{; }x=-\frac{\sqrt{4k^{2}-15k-5}+2k}{3k+1}\text{, }&\left(k\neq -\frac{1}{3}\text{ and }k\leq \frac{15-\sqrt{305}}{8}\right)\text{ or }k\geq \frac{\sqrt{305}+15}{8}\\x=\frac{15}{4}\text{, }&k=-\frac{1}{3}\end{matrix}\right.
Graph
Share
Copied to clipboard
3kx^{2}+x^{2}+4kx+5=0
Use the distributive property to multiply 3k+1 by x^{2}.
3kx^{2}+4kx+5=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
3kx^{2}+4kx=-x^{2}-5
Subtract 5 from both sides.
\left(3x^{2}+4x\right)k=-x^{2}-5
Combine all terms containing k.
\frac{\left(3x^{2}+4x\right)k}{3x^{2}+4x}=\frac{-x^{2}-5}{3x^{2}+4x}
Divide both sides by 3x^{2}+4x.
k=\frac{-x^{2}-5}{3x^{2}+4x}
Dividing by 3x^{2}+4x undoes the multiplication by 3x^{2}+4x.
k=-\frac{x^{2}+5}{x\left(3x+4\right)}
Divide -x^{2}-5 by 3x^{2}+4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}