Solve for k (complex solution)
k=-\frac{x^{2}+2x+8}{3x^{2}+2x+1}
x\neq \frac{-1+\sqrt{2}i}{3}\text{ and }x\neq \frac{-\sqrt{2}i-1}{3}
Solve for k
k=-\frac{x^{2}+2x+8}{3x^{2}+2x+1}
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{-2k^{2}-23k-7}-k-1}{3k+1}\text{; }x=-\frac{\sqrt{-2k^{2}-23k-7}+k+1}{3k+1}\text{, }&k\neq -\frac{1}{3}\\x=-\frac{23}{4}\text{, }&k=-\frac{1}{3}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{-2k^{2}-23k-7}-k-1}{3k+1}\text{; }x=-\frac{\sqrt{-2k^{2}-23k-7}+k+1}{3k+1}\text{, }&k\neq -\frac{1}{3}\text{ and }k\geq \frac{-\sqrt{473}-23}{4}\text{ and }k\leq \frac{\sqrt{473}-23}{4}\\x=-\frac{23}{4}\text{, }&k=-\frac{1}{3}\end{matrix}\right.
Graph
Share
Copied to clipboard
3kx^{2}+x^{2}+2\left(k+1\right)x+k+8=0
Use the distributive property to multiply 3k+1 by x^{2}.
3kx^{2}+x^{2}+\left(2k+2\right)x+k+8=0
Use the distributive property to multiply 2 by k+1.
3kx^{2}+x^{2}+2kx+2x+k+8=0
Use the distributive property to multiply 2k+2 by x.
3kx^{2}+2kx+2x+k+8=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
3kx^{2}+2kx+k+8=-x^{2}-2x
Subtract 2x from both sides.
3kx^{2}+2kx+k=-x^{2}-2x-8
Subtract 8 from both sides.
\left(3x^{2}+2x+1\right)k=-x^{2}-2x-8
Combine all terms containing k.
\frac{\left(3x^{2}+2x+1\right)k}{3x^{2}+2x+1}=\frac{-x^{2}-2x-8}{3x^{2}+2x+1}
Divide both sides by 3x^{2}+2x+1.
k=\frac{-x^{2}-2x-8}{3x^{2}+2x+1}
Dividing by 3x^{2}+2x+1 undoes the multiplication by 3x^{2}+2x+1.
k=-\frac{x^{2}+2x+8}{3x^{2}+2x+1}
Divide -x^{2}-2x-8 by 3x^{2}+2x+1.
3kx^{2}+x^{2}+2\left(k+1\right)x+k+8=0
Use the distributive property to multiply 3k+1 by x^{2}.
3kx^{2}+x^{2}+\left(2k+2\right)x+k+8=0
Use the distributive property to multiply 2 by k+1.
3kx^{2}+x^{2}+2kx+2x+k+8=0
Use the distributive property to multiply 2k+2 by x.
3kx^{2}+2kx+2x+k+8=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
3kx^{2}+2kx+k+8=-x^{2}-2x
Subtract 2x from both sides.
3kx^{2}+2kx+k=-x^{2}-2x-8
Subtract 8 from both sides.
\left(3x^{2}+2x+1\right)k=-x^{2}-2x-8
Combine all terms containing k.
\frac{\left(3x^{2}+2x+1\right)k}{3x^{2}+2x+1}=\frac{-x^{2}-2x-8}{3x^{2}+2x+1}
Divide both sides by 3x^{2}+2x+1.
k=\frac{-x^{2}-2x-8}{3x^{2}+2x+1}
Dividing by 3x^{2}+2x+1 undoes the multiplication by 3x^{2}+2x+1.
k=-\frac{x^{2}+2x+8}{3x^{2}+2x+1}
Divide -x^{2}-2x-8 by 3x^{2}+2x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}